博碩士論文 92521035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.147.29.160
姓名 張書銘(Shu-Ming Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多重相位之延遲鎖定迴路倍頻器設計與分析
(Design and Analysis of Multiphase DLL-based Frequency Multipliers)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 2.5Gbps串列收發器設計
★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路
★ 全數位任意責任週期之同步映射延遲電路★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測
★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路
★ 高解析度可變動責任週期之同步複製延遲電路★ 奈米CMOS晶片內序列傳輸之接收器
★ 奈米CMOS晶片內序列傳輸之送器★ 基於鎖相迴路之多重相位脈波產生器
★ 低能量時脈儲存元件之分析、設計與量測★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器
★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計★ 使用高精準度電流偵測技巧之高轉換效能同步互補式金氧半降壓切換式穩壓器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因為容易設計及穩定的特性,延遲鎖定迴路(Delay-Locked Loop)已經比鎖相迴路(Phase-Locked Loop)更廣泛地應用在時脈誤差調整上。不僅如此,在現今有越來越多的應用開始使用延遲鎖定迴路,例如本地震盪電路與時脈產生器,而這一些應用在以前只能使用鎖相迴路。因此,在不久的未來,延遲鎖定迴路將會更加重要
在本論文中主要針對延遲鎖定迴路及其多重相位倍頻器與差動倍頻器作出說明以及討論,並且使用TSMC 0.18μm 1P6M CMOS Process,供應電壓為1.8V;設計出一個1.28GHz延遲迴路倍頻器。其延遲鎖定迴路的輸入範圍為220MHz~320MHz,多重相位倍頻器輸出時脈倍數可利用數位信號控制來達成,頻率倍數為1x、2x及4x;另外差動倍頻器則會直接合成出2x及4x的訊號。輸出頻率為220MHz ~ 320MHz (1倍頻)、440MHz ~ 640MHz (2倍頻)、880MHz ~ 1.28GHz (4倍頻),電路操作於1.0GHz輸出時脈之峰對峰擾動值分別為32.7ps與54.49ps,其功率消耗為67.16mW。
摘要(英) Delay-Locked Loops (DLLs) have been widely used for clock deskew in stead of Phase-Locked Loop (PLLs) because of easy design and inherent stable. In nowadays, more and more applications, such as local oscillator and clock generator where only used with PLL in the past and are employed DLLs. So, the DLLs will be more significant in the near future.
The main object of this thesis is the description and discussion in Delay-Locked Loop, multiphase edge combiner and fully differential edge combiner; uses TSMC 0.18μm 1P6M CMOS process to design a 1.28GHz DLL-based frequency multiplier and the supply voltage is 1.8V. The operate frequency range of DLL is 220MHz to 329MHz; the multiple factor of the multiphase edge combiner can easily use with digital control code and the multiple factor is 1x, 2x and 4x. Besides, the fully differential edge combiner can directly synthesize the 2x and 4x output signals. The synthesized frequencies of the DLL-based frequency multiplier are 220MHz to 320MHz (multiply-by-1), 440MHz to 640MHz (multiply-by-2) and 880MHz to 1.28GHz (multiply-by-4). The power dissipation and peak-to-peak jitters are 67.16mW and 32.7ps, 54.49ps at 1.0GHz output clock frequency.
關鍵字(中) ★ 延遲鎖定迴路
★ 倍頻器
關鍵字(英) ★ Delay-Locked Loop
★ frequency multiplier
論文目次 Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research Goals 2
1.3 Thesis Organization 3
Chapter 2 Background of Frequency Synthesizer 5
2.1 Architecture of Frequency Synthesizer 5
2.1.1 Direct Digital Frequency Synthesis 5
2.1.2 PLL-based Frequency Synthesizer 6
2.1.3 DLL-based Frequency Synthesizer 8
2.2 Phase-Locked Loop 9
2.2.1 Phase-Locked Loop Fundamental 10
2.2.2 Linear Model Analysis of PLL 11
2.3 Delay-Locked Loop 12
2.3.1 Delay-Locked Loop Fundamental 13
2.3.1.1 Phase Detector 14
2.3.1.2 Charge Pump (CP) and Loop Filter (LF) 15
2.3.1.3 Voltage-Controlled Delay Line (VCDL) 16
2.3.2 Stability Analysis of Delay-Locked Loop 17
2.3.3 Design Consideration of the Delay-Locked Loop 18
2.3.4 Applications of DLL-based Frequency Synthesizer 20
2.3.4.1 Frequency Multiplier for RF Front End 20
2.3.4.2 Frequency Multiplier for High Speed Serial Link 21
2.4 The Comparison of PLL/DLL-based Frequency Synthesizer 22
2.4.1 The basic of DLL-based Frequency Multiplier 23
2.4.1.1 Operation of DLL-based Frequency Multiplier 23
2.4.2 Timing Jitter Accumulation 25
Chapter 3 The Analysis of DLL-based Frequency Multiplier 28
3.1 Introduction 28
3.2 Performance Analysis 28
3.2.1 Phase Noise 29
3.2.1.1 Timing Jitter Accumulation 30
3.2.1.2 Power Spectral Density of Timing Error Random Process 33
3.2.2 Spurious Tones 35
3.2.2.1 Delay Mismatch 35
3.2.2.2 Static Phase Error 36
3.3 Performance Implications for Communication Systems 38
3.3.1 Phase Noise 38
3.3.2 Spurious Tones 40
3.4 The Development of DLL-based Frequency Multiplier 41
3.4.1 Local Oscillator for PCS Applications 42
3.4.2 Frequency Multiplier for Clock Multiplication 43
3.4.3 DLL-based Clock Synthesizer and Tunable Oscillator 44
3.4.4 Programmable DLL-based Frequency Multiplier 46
3.4.5 Low Power Small Area DLL-based Clock Generator 48
Chapter 4 The Programmable DLL-based Frequency Multiplier 50
4.1 Introduction 50
4.2 The Programmable Multiphase DLL-based Frequency Multiplier in High Speed Serial Link Application 50
4.2.1 The Basic Idea of Programmable Multiphase DLL-based Frequency Multiplier 52
4.3 Architecture of Programmable Multiphase DLL-based Frequency Multiplier 55
4.3.1 Phase Selector and Multiphase Edge Combiner 56
4.3.2 Phase Detector 57
4.3.3 Charge Pump and Loop Filter 59
4.3.4 Voltage-Controlled Delay Line 61
4.4 Simulation Results 63
4.5 Conclusion 64
Chapter 5 The Fully Differential DLL-based Frequency Multiplier 66
5.1 Introduction 66
5.2 The Fully Differential DLL-based Frequency Multiplier in Wireless Communication System Application 67
5.2.1 The Theory of Fully Differential DLL-based Frequency Multiplier 68
5.3 Architecture of Fully Differential DLL-based Frequency Multiplier 70
5.3.1 Fully Differential Edge Combiner and Duty Cycle Corrector 71
5.3.2 Phase Detector 73
5.3.3 Charge Pump and Loop Filter 74
5.3.4 Voltage-Controlled Delay Line 75
5.4 Simulation Results 79
5.5 Conclusion 81
Chapter 6 Chip Implementationt 83
6.1 Introduction 83
6.2 The Concept of Signal Integrity 83
6.2.1 Termination 84
6.2.2 The Output Interface of LVDS Driver 86
6.2.2.1 Single-Ended Trans-Impedance Amplifier (TIA) 86
6.2.2.2 Digitalize LVDS Driver 87
6.3 Chip Overview 89
6.4 Experimental results 91
Chapter 7 Conclusion 95
References 97
參考文獻 [1] G. Chang, A. Rofougaran, M .K. Ku, A. A. Abidi, and H. Samueli, “A low power CMOS digitally synthesized 0–13 Mhz agile sinewave generator,” in Digest of Technical Papers, ISSCC’94, 1994, pp. 32–33.
[2] “Parallel-input PLL frequency synthesizer MC145152-2,” Semiconductor technical data, Motorola, Inc., 1999.
[3] G. Chien and P. R. Gray, “A 900MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications”, IEEE J. Solid-State Circuits, vol. 35, no 12, pp. 1996-1999, Dec. 2000
[4] R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications, McGraw-Hill Professional, fourth edition, 1999.
[5] Y. J. Jung, S. W. Lee, D. Shim, W. Kim and S. I. Cho, “A Dual-Loop Delay-Locked Loop Using Multiple Voltage-Controlled Delay Lines,” IEEE J. Solid-State Circuits, vol.36, no.5, pp. 784-791, May. 2001
[6] D. J. Foley and M. P. Flynn, “CMOS DLL-Based 2-V 3.2-ps Jitter 1-GHz Clock Synthesizer and Temperature-Compensated Tunable Oscillator,” IEEE J. Solid-State Circuits, vol.36, no.3, pp. 417-423, Mar. 2001.
[7] Y. Moon, J. Choi, K. Lee, D. K. Jeong and M. K. Kim, “An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance,” IEEE J. Solid-State Circuits, vol.35, no.3, pp. 377-384, Mar. 2000.
[8] B.W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Y. F. Chan, T. H. Lee, and M. A. Horowitz ,”A Portable Digital DLL for High-Speed CMOS Interface Circuits,” IEEE J. Solid-State Circuits, vol.34, no.5, pp. 632-644, May. 1999.
[9] H. H. Chang, J. W. Lin, C. Y. Yang, and S. I. Liu,” A Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock Cycle,” IEEE J. Solid-State Circuits, vol.37, no.8, pp. 1021-1027, Aug. 2002.
[10] S. Sidiropoulos, and M. A. Horowitz, “A Semidigital Dual Delay-Locked Loop,” IEEE J. Solid-State Circuits, vol.32, no.11, pp. 1683-1692, Nov. 1997.
[11] Y. L. Lo, “Design of Delay-Locked Loop with Fast-Lock and Wide-Range Operation,” M.S. thesis, Tamkang University, 2003.
[12] George Chien, “Low-Noise Local Oscillator Design Techniques using a DLL-based Frequency Multiplier for Wireless Applications,” Ph.D. thesis, University of California at Berkeley, 2000.
[13] Ming-Ju Edward Lee, “An Efficient I/O and Clock Recovery Design for Terabit Integrated Circuit,” Ph.D., Dissertation, Stanford University, 2001.
[14] T. C. Weigandt, “Low-Phase-Noise, Low-Timing-Jitter Design Techniques for Delay Cell Based VCOs and Frequency Synthesizers,” Ph.D. Thesis, Memorandum No. UCB/ERL M98/5, Electronics Research Lab, U.C. Berkeley, 1998.
[15] T. Weigandt, B. Kim, and P. R. Gray, “Analysis of Timing Jitter in CMOS Ring Oscillators,” Intl. Symposium on Circuits and Systems (ISCAS), June, 1994.
[16] B. Kim, T. Weigandt, and P. R. Gray, “PLL / DLL System Noise Analysis for Low Jitter Clock Synthesizer Design,” Intl. Symposium on Circuits and Systems (ISCAS), June, 1994.
[17] F. G. Stremler, Introduction to Communication Systems, Third Edition, Addison Wesley, 1990.
[18] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, Addison Wesley, 1989.
[19] P. Z. Peebles Jr., Probability, Random Variables, and Random Signal Principles, McGraw Hill, 1993.
[20] B. Picinbono, Random Signals and Systems, Prentice Hall, 1993.
[21] G. Chien and P. R. Gray, “A 900-MHz local oscillator using DLL-based frequency multiplier technique for PCS applications”, IEEE J. Solid-State Circuits, vol.35, pp. 1996-1999, Dec. 2000.
[22] Aguiar, R.L.; Santos, D.M., “Oscillatorless clock multiplication”, IEEE International Symposium on Circuits and Systems (ISCAS), vol. 4, pp.630-633, May 2001.
[23] D. J. Foley and M. P. Flynn, “CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer clock synthesizer and temperature-compensated tunable oscillator,” IEEE J. Solid-State Circuits, vol. 36, pp. 417-423, Mar. 2001
[24] Chua-Chin Wang; Yih-Long Tseng; Hsien-Chih She; Hu, R., “A 1.2 GHz programmable DLL-based frequency multiplier for wireless applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, pp. 1377-1381, Dec. 2004.
[25] C. Kim, I. C. Hwang, Steve Kang. “ A Low-Power Small-Area ±7.28-ps-Jitter 1-GHz DLL-Based Clock Generator”, IEEE J. Solid-State Circuits, vol. 37, pp. 1414-1420, Nov. 2002
[26] S. Kim, K. Lee, Y. Moon, D. K. Jeong, Y. Choi, and H. K. Kim, “A 960- Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, pp. 691–700, May 1997.
[27] H. O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE J. Solid-State Circuits, vol. 33, pp. 295–299, Feb. 1998.
[28] J. Yuan and C. Svensson, “ Fast CMOS nonbinary divider and counter,” Electronic Letters, vol. 29, pp. 1222-1223, June 1993.
[29] Seong-Jun Song; Sung Min Park; Hoi-Jun Yoo; “A 4-Gb/s CMOS clock and data recovery circuit using 1/8-rate clock technique”, IEEE J. Solid-State Circuits, Volume: 38 , Issue: 7, July 2003, Pages:1213-1219
[30] J. W. Lin, “Design and Realization of Analog Delay-Locked Loops”, M.S. thesis, National Taiwan University, 2001.
[31] S. P. Chen, “Design and Implementation of a 3.125-Gb/s Clock Data Recovery Circuit”, Ph.D. thesis, National Taiwan University, 2003.
[32] William Shing Tak Yan, Howard Cam Luong, “A 900-MHz CMOS Low-Noise -Phase-Noise Voltage-Controlled Ring Oscillator”, IEEE Transactions on Circuit and System, vol. 48, pp. 216-221, Feb 2001.
[33] J. Lee and B. Kim, “A Low-Noise Fast-Lock Phase-Locked Loop with Adaptive bandwidth Control”, IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1137-1145, Aug. 2000.
[34] Hong-Gee Huang, “Transmission Line Termination Methodology for Digital Signal Transmission,” M.S. thesis, National Central University, 1999.
[35] Shao-Ming Chang, “A 2.5V, 0.35um, 2.5Gbps transceiver design,” M.S. thesis, National Central University, 2001.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2005-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明