博碩士論文 92521036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.223.106.100
姓名 王俊凱(Chun-Kai Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 運用低功率與記憶體最佳化技術的MP3解碼器設計
(Single Chip Design of MP3 Decoder with Low Power and Memory Optimization Techniques)
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 應用於多導程心電訊號之無損壓縮演算法與實現
★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現★ 晶圓圖缺陷分類與嵌入式系統實現
★ 語音密集連接卷積網路應用於小尺寸關鍵詞偵測★ G2LGAN: 對不平衡資料集進行資料擴增應用於晶圓圖缺陷分類
★ 補償無乘法數位濾波器有限精準度之演算法設計技巧★ 可規劃式維特比解碼器之設計與實現
★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計★ JPEG2000靜態影像編碼系統之分析與架構設計
★ 適用於通訊系統之低功率渦輪碼解碼器★ 應用於多媒體通訊之平台式設計
★ 適用MPEG 編碼器之數位浮水印系統設計與實現★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) MPEG Layer 3 (MP3)是目前最為普遍的數位音訊壓縮格式,不管是在一些硬體的裝置或是軟體上的應用。最近,MP3已經成為個人數位音樂娛樂的代名詞。許多SOC (system-on-chip)系統都加入MP3當作它的附加功能,例如一些手機或隨身的裝置。市面上也有許多MP3 player的產品在販賣。由於考慮到市場的快速需求,目前一般的做法會採用DSP或是RISC processor的方式去實現。但是採用這種做法並不是一個最佳化的方式,因為它們並不是針對MP3所做的硬體設計,所以會有些多餘的電路,造成較大的功率消耗和面積。另外過多的記憶體使用量也是一個問題。
因為一些手攜式裝置上的應用,功率消耗和產品的成本變得格外重要。記憶體的使用就必須很小心規劃,因為記憶體的使用相當的耗成本以及功率消耗。我們採用了完全ASIC的方式去實現MP3解碼器,可以改善processor所產生的問題,使我們的設計達到低功率和低成本以適用於一般消費性的裝置中。
除了以ASIC做設計所產生的優點,透過仔細觀察MP3的解碼流程,我們可以進一步做改善。在本論文中,針對我們的MP3解碼器架構提出了一些降低功率的技術以及採用最精簡的記憶體使用量。
摘要(英) MPEG Layer 3 (MP3) is the most popular audio compression format in the world for both hardware-based devices and software-based applications. Presently, MP3 has turned into a synonym for personalized music entertainment for millions of people. Based on the consideration of fast time-to-market, a general-purpose DSP or RISC processor is the common implementation approach for MP3 decoder. Since the hardware is not dedicated for MP3 application, some architecture parts in the processor are not utilized completely. The cost of each product is relatively high and the power dissipation is also a problem.
Since the MP3 decoder is targeted to fit into a small portable, it is necessary to minimize the power consumption and cost. Identically, it is always reasonable to reduce the memory requirements since memory is expensive and consumes power. By use of the pure-ASIC approach, we can provide a consumer-economical solution for MP3 audio decoder with the advantages of low-cost and low-power design.
Instead of the benefits obtained from dedicated hardware design, it still exists some improvements by well analysis on the individual features of MP3 decoding. This thesis is targeted on the architecture implementation with some proposed techniques to achieve a low power and memory-optimized design.
關鍵字(中) ★ 音訊
★ 壓縮
★ MP3
★ 低功率
★ 低記憶體使用
關鍵字(英) ★ low memory usage
★ audio
★ compress
★ MP3
★ low power
論文目次 Chapter 1 Introduction ……………………………………………………………1
1.1 Background …………………………………………………………………1
1.2 Motivation …………………………………………………………………2
1.3 MP3 Encoder Overview ……………………………………………………4
1.3.1 Psychoacoustic Model ……………………………………………5
1.3.2 Hybrid Filter Bank ………………………………………………6
1.3.3 Bit Allocation ……………………………………………………7
1.3.4 Quantization ………………………………………………………7
1.3.5 Huffman Coding …………………………………………………8
1.4 MP3 Decoder Overview ……………………………………………………8
1.4.1 Bitstream Parsing …………………………………………………9
1.4.2 Huffman Decoding ………………………………………………10
1.4.3 De-quantization …………………………………………………11
1.4.4 Stereo Process ……………………………………………………12
1.4.5 Aliasing Reduction ………………………………………………13
1.4.6 Hybrid Filter Bank ………………………………………………13
1.5 Thesis Organization ………………………………………………………15
Chapter 2 Overview of Our Previous Work in MP3 Decoder………………16
2.1 Huffman Decoding ………………………………………………………17
2.1.1 Survey on Existing Algorithm …………………………………17
2.1.2 Proposed Architecture …………………………………………18
2.2 De-quantization ……………………………………………………………20
2.2.1 Survey on Existing Algorithm ………………………………………20
2.2.2 Proposed Architecture ………………………………………………21
2.3 Stereo Process ……………………………………………………………22
2.4 Hybrid Filter Bank …………………………………………………………23
2.4.1 Survey on Existing Algorithm ………………………………………24
2.4.2 Proposed Architecture ……………………………………………24
2.4.3 DWIMDCT ………………………………………………………25
2.4.4 Synthesis Filterbank ………………………………………………26
Chapter 3 Proposed Low Power and Memory Optimization Techniques for MP3 Decoder ………………………………29
3.1 Modified Architecture of Hybrid Filter Bank on Two Audio Channels …29
3.1.1 DWIMDCT buffer ………………………………………………30
3.1.1.1 Algorithms Used in DWIMDCT …………………………30
3.1.1.2 Modified Pipeline Approach of DWIMDCT Buffer ………31
3.1.2 Synthesis Window Buffer …………………………………………33
3.1.2.1 Algorithms Used in Synthesis Filterbank ……………………33
3.1.2.2 Modified Pipeline Approach of Synthesis Window Buffer ……35
3.1.3 Modified Architecture of Hybrid Filter Bank ……35
3.2 Pipeline Scheme between Pre-processing Unit and Post-processing Unit ……36
3.2.1 Granule-Level Analysis on Two Audio Channels …………………37
3.2.2 Granule-Level Analysis on Two Audio Channels with Pipeline Scheme …………………………………………………38
3.3 Low Power Technique Using Subband Cut-Off Approach ………………40
3.3.1 Basic Idea …………………………………………………41
3.3.2 Well Analysis of Subband Cut-Off …………………………………42
3.3.2.1 Analysis on Common Audio Test File ………………………42
3.3.2.2 Analysis on General Audio File ……………………………43
3.3.2.3 Analysis on Different Sampling Frequency ……44
3.3.3 Architecture Design …………………………………………………46
3.3.3.1 Implementation of DWIMDCT ……46
3.3.3.2 Implementation of Synthesis Filterbank …………………48
3.4 Memory-Optimized Output Buffer Design for MP3 Decoder …………49
3.4.1 Idle State of MP3 Decoder for PCM Output ………………………50
3.4.2 Proposed Memory-Optimized Output Buffer ………………………51
Chapter 4 Mixed-Signal Design with An On-Chip Digital-to-Analog Converter …………………………………………………………54
4.1 Output Controller …………………………………………………………54
4.2 Strategy of DAC Implementation …………………………………………56
4.3 Mixed-Signal Simulation ………………………………………………57
4.4 Mixed-Signal Layout Integration …………………………………………60
Chapter 5 Chip Implementation and Comparison ……………………………63
5.1 Chip Implementation ………………………………………………………63
5.2 Comparison of MP3 Decoder ………………………………65
Chapter 6 Conclusions …………………………………………………………68
Reference …………………………………………………………………68
參考文獻 [1]ISO/IEC JTC1/SC29/WG11 MPEG, Committee Draft 13818-7 “Generic Coding of Moving Pictures and Associated Audio: Audio (no n backwards compatible coding, NBC)”, 1996.
[2]ISO/IEC JTC1 SC29/WG11, ISO/IEC FDIS 14496-3 Subparts 1, 2, 3, "Coding of Audio-Visual Objects|Part 3: Audio", ISO/IEC JTC1 SC29/WG11 N2503, Oct. 1998.
[3]http://www.codingtechnologies.com/technology/mp3pro.htm
[4]ISO/IEC 11172-3, Information technology – Coding of moving pictures and associated audio for digital storage media at up to 1.5 Mbits/s - Part3: Audio.
[5]J. Zwislocki, “Analysis of Some Auditory Characteristics”, in Handbook of Mathematical Psychology, R, Luce, R Bush, and E. Galanter, Eds. New York: Wiley, 1995.
[6]P. Noll, “MPEG Digital Audio Coding”, IEEE Signal Processing Magazine, Sep. 1997, pp.59-81.
[7]Pan D., “ A Tutorial on MPEG/Audio Compression”, Multimedia, IEEE, Volume 2, Issue 2, 1995, pp. 60-74.
[8]T. H. Tsai, L. G. Chen and Y. C. Liu, “A Novel MPEG-2 Audio Decoder with Efficient Data Arrangement and Memory Configuration”, IEEE Transactions on Consumer Electronics, Vol. 43, No. 3, Aug. 1997, pp.598-604.
[9]S. M. Lei and M. T. Sun, “An entropy coding system for digital HDTV systems”, Signal Processing HDTV IV, 1992, pp. 333-340.
[10]T. H. Tsai, C. N. Liu and W. C. Chen, “Low-Power VLSI Implementation for Variable Length Decoder in MPEG-1 Layer III”, IS&T/SPIE Electronic Imaging Conf., 2004.
[11]T. H. Tsai and C. C. Yen, “A high quality dequantization/quantization method for MP3 and MPEG-4 AAC audio coding”, IEEE Int’l. Symposium on Circuits and Systems (ISCAS), 2002.
[12]A. Avizienis, “Signed-digit number representation for fast parallel arithmetic”, IRE Transactions on Electronic Computers, Vol. EC-10, 1961, pp. 389-400.
[13]B. G. Lee, “A New Algorithm to Compute the Discrete Cosine Transform”, IEEE Transactions on acoustics, speech, and signal processing, vol. ASSP-32, No. 6, Dec. 1984.
[14]W. Lau and A. Chwu, “A common transform engine for MPEG & AC-3 audio decoder”, IEEE Transactions on Consumer Electronics, Vol.43, No.3, Aug. 1997, pp.559-566.
[15]R. Rangachar, “Analysis and Improvement of The MPEG-1 Audio Layer III Algorithm at Low Bit-Rates”, Master’s thesis, Arizona State University, 2001.
[16]T. H. Tsai, C. C. Yang and J. N. Liu, “A Hardware/Software Co-Design of MP3 Audio Decoder,” Journal of VLSI Signal Processing (SCI&EI), Jan. 2004.
[17]Vladimir Z. M. and Miroslav V. D., “ Memory-Optimized AAC Decoder”, IEEE International Symposium on Intelligent Signal Processing and Communication Systems, C6-2-5, Nov. 5-8, 2000.
[18]Takala J., Rostrom J., Vaaraniemi T., Herranen H. and Ojala P., “A Low-Power MPEG Audio Layer III Decoder IC with An Integrated Digital-to-Analog Converter”, IEEE Transactions on Consumer Electronics, Volume: 46, Issue: 3, Aug. 2000, pp. 896-902.
[19]Cloetens H., Hahn R., Hooser B. and Lenke F., “A Low Power Highly-Integrated MPEG1/2 Audio Layer 3 (MP3) Decoder for CD-based Systems”, Custom Integrated Circuits Conference, 12-15 May 2002, pp. 171-174.
[20]S. Hong, D. Kim and M. Song, “A Low Power Full Accuracy MPEG1 Audio Layer III (MP3) Decoder With On-Chip Data Converters”, IEEE Transactions on Consumer Electronics, Volume: 46, Issue: 3, Aug. 2000, pp. 903-906.
[21]Y. Yao, Q. Yao, P. Liu, Z. Xiao, “Embedded software optimization for MP3 decoder implemented on RISC core”, IEEE Transactions on Consumer Electronics, Volume 50, Issue 4, Nov. 2004, pp. 1244-1249.
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明