博碩士論文 92521053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:54.237.183.249
姓名 陳怡伶(Yi-Ling Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 深次微米金氧半電晶體之高頻元件分析與其在高頻電路上應用
(The Characteristics of Sub-micro CMOS technology and Analysis Application in RFIC Design)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以矽半導體製程,所製作之高頻金氧半電晶體為主軸,藉由與矽晶圓廠之計畫合作案,來了解次微米元件特性,並學習設計射頻電路。
首先於第二章裡,針對0.13μm製程之P型金氧半電晶體,利用高頻量測系統測試元件,並藉由所量得之資料,加以探討元件於50 MHz~20.05 GHz之高頻特色,並試著建立其高頻元件模型,並針對元件之高頻與功率特性,討論其最佳之佈局。
在第三章中,相同藉由量測0.13μm P型金氧半電晶體元件,於高頻與低頻下之雜訊表現,並比較N型與P型金氧半電晶體之低頻雜訊。相同地,亦針對元件之雜訊特性,討論其最佳之佈局。
第四章裡,利用0.18μm之1P6M製程,試著設計915 MHz之被動式射頻辨識系統。
摘要(英) With the technology of Si-base device scaling down, CMOS had the better high frequency performance to design the consumption wireless products.
Thus, this thesis is a study with the sub-micron CMOS technology. It had understood the high frequency characteristic by cooperating with the project of the silicon foundry, and learned the radio frequency circuit design.
In chapter 2 and 3, it will be to discuss the high frequency, power performance and noise characteristic of 0.13μm CMOS high frequency devices. Then, t the optimum layout structure for theses performances will be considered and defined.
A passive UHF RFID system was described in chapter 4. Some frond-end circuits of the reader terminal will be tried to realize by using 0.18μm 1P6M CMOS process.
關鍵字(中) ★ 高頻元件
★ 次微米電晶體
關鍵字(英) ★ sub-micro MOSFET
★ high frequency device
論文目次 摘要(中文) III
摘要(英文) IV
目錄 V
圖目錄 VII
表目錄 X
第一章 導論 1
§ 1.1 動機 1
§ 1.2 論文架構 3
第二章 0.13μm p-MOSFET元件模型 4
§ 2.1 簡介 4
§ 2.2 PMOS RF模型之建立 5
§ 2.3 大信號模型之驗證 15
§ 2.4 變溫下的PMOS模型 17
§ 2.5 最佳元件佈局探討 24
第三章 0.13μm CMOS元件雜訊之分析 28
§ 3.1 簡介 28
§ 3.2 MOSFET雜訊 29
§ 3.3 閃爍雜訊(Flicker Noise) 30
§ 3.3.1 MOSFET的閃爍雜訊特性 31
§ 3.3.2 量測結果與其分析 39
§ 3.4 高頻雜訊(High Frequency Noise) 45
§ 3.4.1 MOSFET的高頻雜訊特性 45
§ 3.4.2 量測結果及其分析 47
§ 3.5 最佳元件佈局探討 49
第四章 射頻辨識系統 52
§ 4.1 簡介 52
§ 4.2 RFID系統架構 54
§ 4.3 發射端之功率放大器設計 58
§ 4.4 接收端之低雜訊放大器設計 63
第五章 結論 71
參考文獻 73
參考文獻 [1] Christian Enz, “An MOS transistor model for RF IC design valid in all regions of operation,” IEEE Transactions on Microwave Theory and Techniques, Vol. 50, pp. 342–339, Jan 2002.
[2] Steve Hung-Min Jen, Christian C. Enz, David R. Pehlke, Michael Schroter and Bing J. Sheu, “Accurate modeling and parameter extraction for MOS transistors valid up to 10GHz,” IEEE Transactions on Electron Devices, vol. 11, pp. 2217-2227, Nov. 1999.
[3] H. W. Lin, S. S. Chung, S. C. Wong, and G. W. Huang, “An accurate RF CMOS gate resistance model compatible with HSPICE,” in Proc. IEEE 2004 Int. Conference on Microelectronic Test Structure, Vol. 17, pp. 227-230, Mar 2004.
[4] Yuhua Cheng, Chih-Hung Chen, Christian Enz, Mishel Matloubian and M. Jamal Deen, “MOSFET modeling for RF circuit design,” in Proceedings of the Third IEEE International Caracas Conference on Devices, Circuits and Systems (ICCDCS 2000), Cancun, Mexico, pp. D23, 1 - 8.
[5] A. J. Scholten, R. van Langevelde, L. F. Tiemeijer, R. J. Havens, and D.B. M. Klaassen, “Compact MOS modeling for RF CMOScircuit simulation,” in Simulation of Semiconductor Processes and Devices (SISPAD), 2001, pp. 194–201.
[6] Ickjin Kwon, Minkyu Je, Kwyro Lee, and Hyungcheol Shin, “A simple and analytical parameter-extraction method of a microwave MOSFET,” IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 6, pp. 1503–1509, Jun 2002.
[7] BSIM3v3.2.2 MOSFET Model Users’ Manual, Department of Electrical Engineering and Computer Science, University of California, CA, 1999
[8] Subhash C. Rustagi, Huailin Liao, Jinglin Shi, Yong Zhong Xiong, “BSIM3 RF models for MOS transistors: A novel technique for substrate network extraction,” in IEEE International Conference on Microelectronics Test Structures (ICMTS), 17-20 March, 2003, pp. 118-123.
[9] J.C. Guo, C. H. Huang, K. T. Chan, W. Y. Lien, C. M. Wu, and Y. C. Sun, “0.13μm low voltage logic base RF CMOS technology with 115GHz fT and 80GHz fMAX,” 33rd European Microwave Conference, pp. 682-686, 2003.
[10] Sang M. Nam, Byung J. Lee, Sung H. Hong, Chong G. Yu, Jong T. Park and Hyun K. Yu, “Experimental investigation of temperature dependent RF performances of RF-CMOS devices,” in 6th International Conference on IC and CAD (ICVC '99), pp.174-177, Oct., 1999, Seoul, Korea.
[11] Mitiko Miura-Mattausch, “MOSFET modeling for RF-CMOS design,” IEEE, pp. 482-490, 2004.
[12] J. J. Ou, X. Jin, I. Ma, C. Hu and P. R. Gray, “CMOS rf modeling for GHz communication IC’s,” in 1998 Symposium on VLSI Technology Digest, pp. 94-95, 1998.
[13] E. Abou-Allam and T. Manku, “A small-signal MOSFET model for radio frequency IC application,” IEEE Tansactions on Electron Device, pp. 2217-2226, 1999.
[14] K.W. Chew, K.S. Yeo, S.-F. Chu and Y.M. Wang, “Impact of 0.25μm dual gate thickness CMOS process on flicker noise performance of multifingered deep-submicron MOS device,“ in IEE Proc.-circuits Devices Syst., Vol. 148, No. 6, pp 312-317, Dec 1999.
[15] M.C. King, Z.M. Lai, C.H. Huang, C.F. Lee, M.W. Ma, C.M. Huang, Yun Chang and Albert Chin, “Modeling finger number dependence on RF noise to 10GHz in 0.13μm node MOSFETs with 80nm gate length,” in 2004 IEEE radio frequency integrated circuit symposium, pp. 171-174, 2004.
[16] Pierre H. Woerlee, Mathijs J. Knitel, Ronald van Langevelde, Dirk B. M. Klaassen, Luuk F. Tiemeijer, Andries J. Scholten and Adrie T.A. Zegers-van Duijnhoven, “RF-CMOS performance trends,” IEEE Trans. Electron Devices, vol. 48, No. 8, pp. 1776-1782, 2001.
[17] T. Boutchacha, G. Ghibaudo and B. Belmekki, “Study of low frequency noise in the 0.18μm silicon CMOS transistors,” in Proc. IEEE 1999 Int. Conf. on Microelectronic Test Stuctures, Vol. 12, pp. 84-88, 1999.
[18] Yi Lin, Michael Obrecht and Tajinder Manku, “RF noise characterization of MOS devices ofr LNA design using a phsucal-based quasi-3-D approach,” IEEE trans. Circuits and system-II: Analog and digital signal processing, Vol. 48, No. 10, pp. 972-984, Oct 2001.
[19] C. H. Huang, C. H. Lai, J. C. Hsieh, J. Liu and A. Chin, “Rf noise in 0.18-?m and 0.13-?m MOSFETs,” IEEE Microwave and Wireless Components Lett.. vol. 12, pp. 464-466, 2002.
[20] Alfredo Arnaud and Carlo Galup-Montoro, “A compact model for flicker noise in MOS transistors for analog circuit design,” IEEE Trans. Electron Devices, vol. 50, pp. 1815-1818, 2003.
[21] C. S. Kim, H. K. Yu, H. Cho, S. Lee and K. S. Nam, “Critical discussion on unified 1/f noise models for MOSFETs,” IEEE, 2003.
[22] L. K. J. Vandamme, Xiaosong Li and Dominique Rigaud, “1/f noise in MOS devices, mobility or number fluctuations,” IEEE Trans. Electron Devices, vol. 41, pp. 1936-1945, 1994.
[23] Yuhua Cheng, Chih-Hung Chen, Mishel Matloubian and M. Jamal Deen, “High frequency small signal AC and noise modeling of MOSFETs for RF IC design,” IEEE Trans. Electron Devices, vol. 49, pp. 400-408, 2002.
[24] Kenneth K. O, Namkyu Park and Dong-Jun Yang, “1/f noise of NMOS and PMOS transistors and their implications to design of voltage controlled oscillators,” in 2002 IEEE Radio Frequency Integrated Circuit Symposium, 2002.
[25] Jacques Zimmermann and Gerard Ghibaudo, “Static and noise characterization of deep submicron CMOS devices”, IEEE, pp. 521-529, 1995.
[26] K.K. Hung, P.K. Ko, C. Hu and Y.C. Cheng, “Flicker noise characteristics of advanced MOS technology”, in IEDM Tech. Dig., 1988.
[27] Fan-Chi Hou, Gijs Bosman and Mark E. Law “Simulation of oxide trapping noise in submicron n-channel MOSFETs”, IEEE Trans. Electron Devices, vol. 50, pp. 846-852, 2003.
[28] F. M. Klaasen, “High frequency noise of the function field-effect transistor”, IEEE Trans. on Electron Devices, vol. 14, no. 7, pp.368-373, 1967.
[29] Andries J. Scholten, Luuk F. Tiemeijer, Ronald van Langevelde, Ramon J. Havens, Adrie T.A. Zegers-van Duijnhoven and Vincent C. Venezia, “Noise modeling for RF CMOS circuit simulation”, IEEE Trans. on Electron Devices, vol. 50, no. 3, pp. 618-632, 2003.
[30] Udo Karthaus and Martin Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7-?W minimum RF input power”, IEEE Journal of solid-state circuit, vol. 38, no. 10, pp. 1602-1608, Oct. 2003.
[31] Joon H. Kim, Ji H. Kim, Youn S. Noh, Young S. Kim, Song G. Kim and Chul S. Park, “An MMIC smart power amplifier of 21% PAE at 16dBm power level for W-CDMS mobile communication terminals”, in 2002 IEEE GaAs Digest, pp. 181-184, 2002.
[32] Ravi Gupta, Brian M. Ballweber and David J. Allstot, “Design and optimization of CMOS RF power amplifiers”, IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 166-175, Feb. 2001.
[33] Hafez Fouad, Khaled Sharaf, Essam El-Diwany, and Hadia El-Hennawy, “An RF CMOS modified-cascode LNA with inductive source degeneration”, in 19th National Tadio Science Conference, Alexandria, pp.450-457, Mar. 2002.
[34] M. Kumarasamy Raja, Terry Tear Chin Boon, K.Nuntha Kumar and Wong Sheng Jau, “A fully integrated variable gain 5.75GHz LNA with on chip active Balun for WLAN”, in 2003 IEEE Radio Frequency Integrated Circuit Symposium, pp. 439-442, IEEE, 2003.
[35] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill Inc, New York, 2001.
[36] B. Razavi, RF microelectonics, PreTEX Inc, USA, 1998.
[37] Klaus Finkenzeller, RFID HANDBOOK, John Wiley & Sons Ltd, 1999.
[38] Trond Ytterdal, Yuhua Cheng, Tor A. Fjeldly, Device Modeling for Analog and RF CMOS Circuit Design, John Wiley & Sons Ltd, 2003.
[39] M. Kumarasamy Raja, Terry Tear Chin Boon, K.Nuntha Kumar and Wong Sheng Jau, “Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures”, IEEE Trans. on Electron Devices, vol. 41, no. 11, pp. 1965-1971, NOV 1994.
[40] Ray Jayaraman, Charles G. Sodini, “A 1/f noise technique to extract the oxide trap density near conduction band edge of Silicon”, IEEE Trans. on Electron Devices, vol. 36, no. 9, pp. 1773-1782, SEP 1989.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2005-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明