博碩士論文 92521076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.15.202.4
姓名 楊文豪(Wen-Hau Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用非接觸式阻抗影像在生物組織上的應用
(Application of Contactless Impedance Image in Biologic Tissue)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來生物組織阻抗的量測已經成為生物醫學或臨床研究中相當重要的工具,由於目前導電率量測大部分透過電極以接觸式的方式量測,在量測導電率時,電極與皮膚表面接觸之間存在著許多可能影響量測數值的因素,為了降低阻抗量測的誤差,發展非接觸的阻抗影像是迫切且必要的。本論文提出一以非接觸式阻抗影像量測系統的設計方法,本系統主要包含了差動線圈、二維掃描平台、鎖頻放大器,以及人機控制介面。差動線圈包含了傳輸線圈與接收線圈,傳輸線圈產生主磁場在待測物物體內部感應產生渦電流,阻抗影像利用二維的移動平台控制感應線圈在掃描待測物表面渦電流所產生的磁場,將訊號透過資料擷取卡傳送到電腦,並且將量測的阻抗資料以二維影像的方式重建。在本論文的實驗中,吾人分別檢驗阻抗影像量測系統的性能,其中包含了,影響空間解析度與訊號雜訊比的各種變數,並且實際量測生物組織以及假體的阻抗影像,實驗的結果不但驗證了系統的性能,可以作為未來進一步提升系統靈敏度的重要依據。雖然本論文提出非接觸式阻抗影像可以得到生物組織的阻抗影像,不過仍然有許多缺點可作為未來努力的目標,例如線圈的微小化,掃描平台的設計,陣列線圈感測器等,當阻抗影像的空間解析度與靈敏度都提升後,許多臨床應用都可以進一步被開發出來。
摘要(英) In recent years, the bio-impedance measurement has become an emerging tool
for biomedical research and medical practice. The conductivity of biologic tissue is
usually accessed by electrodes attached on the object. There are many measurement
errors which could rise in interface between electrodes and object. In order to reduce
the contact error, it is necessary to develop a contactless impedance measurement.
In this paper, we proposed an impedance image modality providing the
conductivity distribution within the object. The measurement system includes
differential coil, 2D scanning platform, lock-in amplifier, and graphical user interface.
The transmittal coil produces a primary magnetic field and results in an eddy current
in the object. The received coil picks up the secondary magnetic field resulting from
the eddy current. The measured information is collected by the data acquiring card
and performed by the two-dimensional image.
From the experimental results, we have examined several variables affecting the
performance of image quality, such as spatial resolution, signal to noise ratio. The
conductivity distribution of biologic tissue and phantoms can be obtained successfully
by the proposed imaging method. The experimental results not only provide the
feasibility in contactless impedance image, but also provide an improvement in the
future.
In this work, there still exist many drawbacks to overcome. We hope to minimize
the size of differential coil to improve the spatial resolution. The 2D scanning
platform can be upgraded to a 3D platform. The sensor array can speed up the time
cost of image reconstruction. Finally, many clinic applications can be developed
based on the contactless impedance image.
關鍵字(中) ★ 鎖頻放大器
★ 差動線圈
★ 阻抗影像
★ 非接觸
關鍵字(英) ★ lock-in amplifier
★ differential coil
★ impedance image
★ contactless
論文目次 目 錄
頁次
中文摘要
英文摘要
目 錄 I
圖 目 錄 IV
表 目 錄 VIII
第一章 前言 1
1.1 研究動機 1
1.2 阻抗影像的背景 1
1.3 阻抗量測在生物醫學的應用 3
第二章 組織電學特性 4
2.1組織的特性 4
2.1.1 組織的電路模型 5
2.1.2 組織阻抗表示的方式 6
2.2 影響組織阻抗的因素 8
2.2.1 組織阻抗與頻率的關係 8
2.2.2 溫度與組織阻抗的關係 8
2.2.3 時間與組織阻抗的關係 9
2.2.4 非等方向性與組織阻抗變化的關係 10
2.3 組織阻抗量測的應用 11
2.3.1 皮膚阻抗與良導絡 11
2.3.2 阻抗體積變化描記器 12
第三章 影像系統 14
3.1 理論方法 14
3.1.1 運動點電荷產生的磁場 14
3.1.2 BIOT-SAVART定律 16
3.1.3 感應電動勢 17
3.2 非接觸式阻抗影像量測系統 19
3.2.1 系統架構 20
3.2.2 掃描平台介紹 21
3.2.3 穩壓電路 23
3.2.4 人機介面 24
3.3 線圈感測器 26
3.4 訊號處理 30
3.4.1 鎖頻放大器(Lock-in Amplifier) 30
3.4.2 超取樣 32
第四章 實驗與結果 40
4.1 空間解析度實驗 40
4.1.1 磁性與非磁性物質對空間解析度的影響 41
4.1.2 線圈直徑對空間解析度的影響 45
4.1.3 二維阻抗影像的空間解析度 47
4.2 訊號雜訊比量測實驗 52
4.3 假體量測實驗 56
4.4 生物組織實驗 60
第五章 結論與未來展望 67
5.1 結論 67
5.2 未來展望 68
參考文獻 70
論文著作 76
圖 目 錄
頁次
圖2-1 在不同頻率下,電流與細胞之間的關係圖 5
圖2-2 電流通過細胞內外的等效電路 5
圖2-3 (a)四個電子元件;(b)三個電子元件細胞等效模型 6
圖2-4 骨頭組織的特定阻抗與頻率之間的關係圖 10
圖2-5 阻抗體積描記法的量測方式圖 13
圖3-1 運動電荷產生的磁場 16
圖3-2 載有電流之導線所產生之磁場 17
圖3-3 系統同軸線圈結構圖 19
圖3-4 硬體流程圖 20
圖3-5 掃描路徑 20
圖3-6 系統硬體圖 21
圖3-7 (a)兩相式單繞組;(b)兩相式雙繞組步進馬達接線圖 22
圖3-8 兩相式單繞組步進馬達驅動電路圖 22
圖3-9 兩相式雙繞組步進馬達驅動電路圖 22
圖3-10(a)避免不穩定的產生;(b)系統的保護電路 23
圖3-11 本系統實際的穩壓電路 24
圖3-12 圖控式人機介面 25
圖3-13 程式流程圖 25
圖3-14 一般非接觸式導電率影像係統基本原理圖 27
圖3-15 線圈結構圖 27
圖3-16 鐵心實體圖 28
圖3-17 差動線圈和雙線圈的幾何結構 29
圖3-18 差動線圈的接收線圈與傳輸線圈實體圖 30
圖3-19 雙線圈的接收線圈與傳輸線圈實體圖 30
圖3-20 鎖頻放大器基本流程圖 31
圖3-21 鎖頻放大器實際接線圖 32
圖3-22 類比-數位轉換的量化過程 33
圖3-23 量化誤差的機率密度函數 34
圖3-24 量化誤差的功率頻譜密度 36
圖3-25 超取量後量化誤差的功率頻譜密度 36
圖3-26 訊號為交流訊號(fs=6Hz) 38
圖3-27 訊號為交流訊號(fs=12Hz) 38
圖3-28 訊號為直流訊號(fs=6Hz) 38
圖3-29 訊號為直流訊號(fs=12Hz) 38
圖3-30 訊號為直流訊號(fs=6Hz) 39
圖3-31 超取樣方塊圖 39
圖4-1 空間解析度的定義 41
圖4-2 空間解析度實驗一量測系統 42
圖4-3 空間解析度量測系統(a)鐵片;(b)鋁片 42
圖4-4 (a)空間解析度量測結果 43
圖4-4 (b)空間解析度量測結果 43
圖4-4 (c)空間解析度量測結果 44
圖4-4 (d)空間解析度量測結果 44
圖4-5 空間解析度實驗二量測系統 45
圖4-6 空間解析度量測系統的待測物 45
圖4-7 (a)空間解析度量測結果 46
圖4-7 (b)空間解析度量測結果 46
圖4-8 (a)鋁片一角落 47
圖4-8 (b)掃描振幅影像 48
圖4-8 (c)掃描相位影像 48
圖4-9 (a)鐵片一角落 49
圖4-9 (b)掃描振幅影像 49
圖4-9 (c)掃描相位影像 50
圖4-10(a)一段不規則鋁片 50
圖4-10(b)掃描振幅影像 51
圖4-10(c)掃描相位影像 51
圖4-11(a)訊號雜訊比量測結果 54
圖4-11(b)訊號雜訊比量測結果 54
圖4-11(c)訊號雜訊比量測結果 55
圖4-11(d)訊號雜訊比量測結果 55
圖4-12(a)沒有加入食鹽水濃度假體實體圖 57
圖4-12(b)掃描相位影像 57
圖4-13(a)0.9%食鹽水濃度假體實體圖 57
圖4-13(b)掃描相位影像 58
圖4-14(a)9%食鹽水濃度假體實體圖 58
圖4-14(b)掃描相位影像 59
圖4-15(a)容器內裝有0.9%食鹽水濃度 59
圖4-15(b)掃描振幅影像 60
圖4-16(a)香蕉 61
圖4-16(b)香蕉掃描相位影像 61
圖4-16(c)香蕉(冷凍)掃描相位影像 62
圖4-17(a)葉子 62
圖4-17(b)葉子掃描相位影像 62
圖4-18(a)豬肉 63
圖4-18(b)豬肉掃描相位影像 63
圖4-19(a)羊排 63
圖4-19(b)羊排掃描相位影像 64
圖4-20 國外論文(a)羊排 64
圖4-20 國外論文(b)掃描結果 64
圖4-21(a)三層肉 65
圖4-21(b)三層肉掃描相位影像 66
表 目 錄
頁次
表2-1 阻抗與導納轉換關係表 7
表3-1 感測器線圈的規格參數表 29
表4-1 感測器工作頻率及振幅大小 40
表4-2 空間解析度量測結果(待測物:鐵片) 42
表4-3 空間解析度量測結果(待測物:鋁片) 42
表4-4 空間解析度量測結果(待測物:鋁片與鐵片) 45
表4-5 訊號雜訊比量測結果 53
參考文獻 參考文獻
[1] A.Kaufman and G.Keller, "Induction Logging," Amsterdam, TheNetherlands: Elsevier, 1989.
[2] A.Korjenevsky, S.Sapetsky, and Cherepenin, "Magnetic induction tomography: experimental realization," Physiol.Meas., vol.21, pp.89-94, 2000.
[3] Anton, V. N., Peter, W. A. K., Janse, Johan, T. M., Pieter E Postmus, Theo, J. C. F., and Peter, M. J. M., "Pulmonary perfusion measured by means of electrical impedance tomography," Physiological Measurement, vol.19, no.2, pp.263-273, 1998.
[4] Barber D.C. and Brown B.H., "Applied potential tomography," J.Phys.E: Sci.Instrum.17 723-33, 1984.
[5] Bayford, R. H., Boone, K. G., Hanquan, Y., and Holder, D. S., "Improvement of the positional accuracy of EIT images of the head using a Lagrange multiplier reconstruction algorithm with diametric excitation," Physiological Measurement, vol.17, no.4A, pp.A49-A57, 1996.
[6] Brown, B. H., Barber, D. C., and Seagar, A. D., "Applied potential tomography: possible clinical applications," Clinical Physics and Physiological Measurement, vol.6, no.2, pp.109-121, 1985.
[7] Burger H.C. and Dongen R., "Specific electrical resistance of body tissue," Phys.Med.Biol.5 431-47, 1961.
[8] Cherepenin, V., Karpov, A., Korjenevsky, A., Kornienko, V., Yu, K., Mazaletskaya, A., and Mazourov, D., "Preliminary static EIT images of the thorax in health and disease," Physiological Measurement, vol.23, no.1, pp.33-41, 2002.
[9] Epstein B.R. and Foster K.R., "Anisotropy in the dielectric properties of skeletal muscle," Med.Biol.Eng.Comput.21 51-5, 1983.
[10] Eyuboglu, B. M., Brown, B. H., and Barber, D. C., "Problems of cardiac output determination from electrical impedance tomography scans," Clinical Physics and Physiological Measurement, vol.9, no.4A, pp.71-77, 1988.
[11] Fitzgerald, A. J., Thomas, B. J., Cornish, B. H., Michael, G. J., and Ward, L. C., "Extraction of electrical characteristics from pixels of multifrequency EIT images," Physiological Measurement, vol.18, no.2, pp.107-118, 1997.
[12] G Webster, "Electrical Impedance Tomography," 1989.
[13] Gencer, N. G. and Tek, M. N., "Electrical conductivity imaging via contactless measurements," Medical Imaging, IEEE Transactions on, vol.18, no.7, pp.617-627, 1999.
[14] H.Griffiths, W.R.Stewart, and W.Gough, "Magnetic induction tomography. A measuring system for biological tissues," Ann.N Y Acad.Sci.,vol.873, pp.335-345, 1999.
[15] H.Scharfetter, H.Lackner, and J.Rosell, "Magnetic induction tomography:hardware for multi-frequency measurements in biological tissues," Physiol.Meas., vol.22, pp.131-146, 2001.
[16] Hahn, G., Sipinkova, I., Baisch, F., and Hellige, G., "Changes in the thoracic impedance distribution under different ventilatory conditions," Physiological Measurement, vol.16, no.3A, pp.A161-A173, 1995.
[17] Henderson R P and Webster J G, "An impedance camera for spatially specific measurements of the thorax," IEEE Trans.Biomed.Eng.BME-25 250-4, 1978.
[18] Hermann , S., Helmut, K. L., and Javier, R., "Magnetic induction tomography: hardware for multi-frequency measurements in biological tissues," Physiological Measurement, vol.22 pp.131-146, 2001.
[19] Hill D.W. and Thompson F.D., "The effect of hematocrit on the resistivity of human blood at 37°C and 100kHz," Med.Biol.Eng.13 182-6, 1975.
[20] Holder, D. S., Rao, A., and Hanquan, Y., "Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetized rabbit," Physiological Measurement, vol.17, no.4A, pp.A179-A186, 1996.
[21] Hughes, A. T., Liu, P., Griffiths, H., Lawrie, B. W., and Wiles, C. M., "Simultaneous electrical impedance tomography and videofluoroscopy in the assessment of swallowing," Physiological Measurement, vol.17, no.2, pp.109-119, 1996.
[22] Inez Frerichs, "Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities," Physiological Measurement, vol.21, no.2, pp.R1-R21, 2000.
[23] J.Netz, E.Forner, and S.Haagemann, "Contactless impedance measurement by magnetic induction-a possible method for investigation of brain impedance," Physiol.Meas., vol.14, pp.463-471, 1993.
[24] Jossinet, J., "A hardware design for imaging the electrical impedance of the breast," Clinical Physics and Physiological Measurement, vol.9, no.4A, pp.25-28, 1988.
[25] Jurgens I, Rosell, J., and Riu, P. J., "Electrical impedance tomography of the eye: in vitro measurements of the cornea and the lens," Physiological Measurement, vol.17, no.4A, pp.A187-A195, 1996.
[26] Kerner, T. E., Paulsen, K. D., Hartov, A., Soho, S. K., and Poplack, S. P., "Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects," Medical Imaging, IEEE Transactions on, vol.21, no.6, pp.638-645, 2002.
[27] L.Meade, "Lock-in amplifiers : principles and applications," 1983.
[28] Levy, S., Adam, D., and Bresler, Y., "Electromagnetic impedance tomography (EMIT): a new method for impedance imaging," Medical Imaging, IEEE Transactions on, vol. 21, no. 6, pp. 676-687, 2002.
[29] Levy, S., Adam, D., and Bresler, Y., "Electromagnetic impedance tomography (EMIT): a new method for impedance imaging," Medical Imaging, IEEE Transactions on, vol.21, no.6, pp.676-687, 2002.
[30] Li, J. H., Joppek, C., and Faust, U., "Fast EIT data acquisition system with active electrodes and its application to cardiac imaging," Physiological Measurement, vol.17, no.4A, pp.A25-A32, 1996.
[31] P.Tarjan and R.McFee, "Electrodeless measurements of the effective resistivity of the human torso and head by magnetic induction," IEEETrans.Biomed.Eng., vol.BME-15, pp.266-278, Oct, 1968.
[32] Pethig R., "Dielectric and Electric Properties of Biological Materials," Chichester: John Wiley, 1979.
[33] Pethig R., "Dielectric properties of biological materials: biophysical and medical application," IEEE Trans.Elec.Insulation EI-19 453-74, 1984.
[34] Reddy G.H. and Saha S, "Electrical and dielectric properties of wet bone as a function of frequency," IEEE Trans.Biomed.Eng.BME-31 296-302, 1984.
[35] Rosell J., Colorminas J., Riu P., Pallas R., and Webster J.G., "Skin impedance from 1 Hz to 1MHz," IEEE Trans.Biomed.Eng.35 649-651, 1988.
[36] S.Al-Zeibak and N.Saunders, "A feasibility study of in vivo electromagnetic imaging," Phys.Med.Biol., vol.38, pp.151-160, 1993.
[37] Schlappa, J., Annese, E., and riffiths, H., "Systematic errors in multi-frequency EIT," Physiological Measurement, vol.21, no.1, pp.111-118, 2000.
[38] Schwan H.P., "Electrical Properties of tissue and cell suspensions," Adv.Biol.Med.Phys.5 147-209, 1957.
[39] Smallwood, R. H., Hampshire, A. R., Brown, B. H., Primhak, R. A., Marven, S., and Nopp, P., "A comparison of neonatal and adult lung impedances derived from EIT images," Physiological Measurement, vol.20, no.4, pp.401-413, 1999.
[40] SPRA461 Texas Instruments User's Guide, pp. pp. J. Oversampling Techniques using the TMS320C24x Family. 1998.
Ref Type: Report
[41] SPRU357B Texas Instruments User's Guide, pp. pp. TMS320LF2407 DSP Controllers. 2001.
Ref Type: Report
[42] Sverre Grimnes, M. P. and Orjan Grottem Martinsen, M. P., "Bioimpedance and Bioelectricity basics," 2000.
[43] Todd E Kerner, Dinsie, B. W., Osterman, K. S., Fred, R. R., Alex, H., and Keith, D. P., "Electrical impedance imaging at multiple frequencies in phantoms," Physiological Measurement, vol.21, no.1, pp.67-77, 2000.
[44] Ulker Karbeyaz, B. and Gencer, N. G., "Electrical conductivity imaging via contactless measurements: an experimental study," Medical Imaging, IEEE Transactions on, vol.22, no.5, pp.627-635, 2003.
[45] Yerworth, R. J., Bayford, R. H., Cusick, G., Conway, M., and Holder, D. S., "Design and performance of the UCLH Mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function," Physiological Measurement, vol.23, no.1, pp.149-158, 2002.
[46] Zheng E., Shao S., and Webster J.G., "Impedance of skeletal muscle from 1 Hz to 1MHz," IEEE Trans.Biomed.Eng.35 649-651, 1984.
[47] 何中庸, "電源穩壓IC應用手冊," 2001.
[48] 張啟陽, "電磁學," 2003.
[49] 黃豪銘, "醫用電子學," 2003.
[50] 賴逢甲, "良導絡臨床指引," 1985.
[51] 賴逢甲, "良導絡理論的研究," 1985.
[52] 賴逢甲, "良導絡測定診斷法," 1985.
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2005-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明