博碩士論文 92522028 詳細資訊


姓名 袁凱群(Kai-Chun Yuan)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 限制區域非法進入者之偵測
(Illegal Entrant Detection in Restricted Area)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著取像設備的價格大幅的降低,監控系統目前已經廣泛的應用在日常生活當中。不過目前使用的監控系統大多都只有錄影的功能,只能提供事後的資訊。因此便有人提出了智慧型監控系統的概念,利用電腦視覺的方法,在不需要人為的操作之下,讓監控系統能夠自動對攝影機所擷取的影像進行分析,以具有偵測、追蹤、辨識、分析的功能。
本論文提出一個限制區域非法進入者偵測系統,利用制服色彩為特徵,用以判斷進入限制區域中的人員是否具有合法之身分。首先利用背景相減法來偵測是否有目標物的存在,並利用目標物的位置、大小與色彩等資訊來追蹤物體。接著使用一個以區塊為主的身體區域分割演算法,將目標物切割為頭部、上半身與下半身區域。最後針對穿著制服的身體區域抽取色彩的特徵抽並分類,以判斷該進入者是否具有合法之身分。
實驗結果顯示,本論文所提出之方法可以有效的辨別進入者之身分。
摘要(英) Due to the cost-down of capturing devices, surveillance systems are gradually widely applied in our daily life. However, the main function of current surveillance systems only focus on the recoding of video data. Besides, a lot of attention has to be paid by the surveillants in monitoring the video data. The developing of an automatic and intelligent surveillance system to detect, track, recognize, and analyze moving objects is an effective solution for saving the human resources.
The main purpose of this thesis is to detect illegal entrants in restricted areas. Since a legal entrant in restricted areas always wears uniform, the color information of uniform is extracted to serve as the feature for determining whether an entrant is legal or not. Firstly, background subtraction technique is employed to detect moving objects from image sequences. Three key features including object position, object size, and object color are extracted to track the detected object. After that, the body of entrant is segmented into three regions; head, upper body and lower body, using the watershed segmentation methods. Finally, color features extracted from the region of interesting (ROI) are utilized to classify the legality of an entrant.
Experiments were conducted to verify the feasibility and validity of our proposed system in detecting and tracking illegal entrants in restricted areas. The results is satisfactory.
關鍵字(中) ★ 視訊監控
★ 分水嶺分割法
★ 目標物追蹤
★ 目標物偵測
★ 事件偵測
關鍵字(英) ★ object tracking
★ watershed segmentation method
★ video surveillance
★ event detection
★ object detection
論文目次 第一章 緒論 1
1.2 相關研究 2
1.3 系統流程 4
1.4 論文架構 5
第二章 目標物偵測與追蹤 6
2.1 目標物與陰影偵測 7
2.2 目標物追蹤 13
2.2.1 目標物對應 13
2.2.2 目標物之色彩特徵 17
第三章 頭與身體區域偵測 20
3.1 區塊產生 21
3.1.1 影像簡單化 22
3.1.2 梯度計算 24
3.1.3 泛流處理 26
3.1.4 區塊合併 27
3.2 身體模組 29
3.2.1 頭部區塊偵測 29
3.2.2 上半身與下半身區塊偵測 34
第四章 色彩特徵抽取與分類 36
4.1 制服色彩統計 36
4.2 色彩特徵抽取 40
4.3 色彩特徵分類 41
第五章 實驗結果 44
5.1 偵測區域之劃定 44
5.2 目標物偵測 45
5.3 身體區域區分 46
5.4 進入者身分判別 47
第六章 結論與未來工作 54
6.1 結論 54
6.2 未來工作 55
參考文獻 56
參考文獻 [1] T. Horprasert, D. Harwood and L.S. Davis, “A statistical approach for real-time robust background subtraction and shadow detection,” in Proc. IEEE Frame-Rate Workshop, 1999.
[2] R. Cucchiara, C. Grana, M. Piccardi and A. Prati, “Detecting moving objects, ghosts and shadows in video streams,” IEEE Trans. Pattern Analysis and Machine Intelligence, VOL.25, NO.10, pp. 1337-1342, Oct. 2003.
[3] O. Javed, K. Shafiqu and M. Shah, “A hierarchical approach to robust background subtraction using color and gradient information,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 22-27, 2001.
[4] L.D. Stefano, S. Mattoccia and M. Mola, “A change-detection algorithm based on structure and colour,” in Proc. IEEE Conf. Advanced Video and Signal Based Surveillance, pp.252-259, 2003.
[5] S. Khan and M. Shah, “Tracking people in presence of occlusion,” in Proc. Asian Conf. Computer Vision, Taipei, Taiwan, 2000.
[6] A. Cavallaro, O. Steiger and T. Ebrahimi, “Tracking video objects in cluttered background,” IEEE Trans. Circuits and Systems for Video Technology, VOL. 15, NO. 4, Apr. 2005.
[7] F. Brémond and M. Thonnat, “Tracking multiple nonrigid objects in video sequences,” IEEE Trans. Circuits and Systems for Video Technology, VOL. 8, NO. 5, pp. 575-584, Sep. 1998 .
[8] H.T. Chen, H.H. Lin and T.L. Liu, “Multi-object tracking using dynamical graph matching,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, VOL. 2, pp. 210-217, 2001.
[9] I. Haritaoglu, D. Harwood and L.S. Davis, “W4: real-time surveillance of people and their activities,” IEEE Trans. Pattern Analysis and Machine Intelligence, VOL. 22, NO. 8, pp. 809-830, Aug. 2000.
[10] M.D. Beynon, D.J. Van Hook, M. Seibert, A. Peacock and D. Dudgeon, ”Detecting abandoned packages in a multi-camera video surveillance system,” in Proc. IEEE Conf. Advanced Video and Signal Based Surveillance, pp. 221-228, 2003.
[11] S. Park and J.K. Aggarwal, “Segmentation and Tracking of Interacting Human Body Parts under Occlusion and Shadowing,” in Proc. IEEE Workshop Motion and Video Computing, pp. 105-111, 2002.
[12] L. Zhao and C.E. Thorpe, “Stereo- and neural network-based pedestrian detection,” IEEE Trans. Intelligent Transportation Systems, VOL. 1, NO. 3, pp. 148-154, Sep. 2000.
[13] R.T. Collins, A.J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, “A system for video surveillance and monitoring,” Tech. Rep., The Robotics Institute, Carnegie Mellon University, 2000. CMU-RI-TR-00-12.
[14] ISO/IEC 15938-3:2001, “Multimedia Content Description Interface-Part 3: Visual,“ Version 1.
[15] P. Salembier and M. Pardàs, “Hierarchical morphological segmentation for image sequence coding,” IEEE Trans. Image Processing, VOL. 3, NO. 5, 639-651, Sep. 1994.
[16] M. Kim, J.G. Choi, D. Kim, H. Lee, M.H. Lee, C. Ahn and Y.S. Ho, “A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information,” IEEE Trans. Circuits and System for Video Technology, VOL. 9, pp. 1216-1226, Dec. 1999.
[17] B. Hill, Th. Roger and F.W. Vorhagen, “Comparative analysis of the quantization of color spaces on the basis of CIELab color-difference formula,” ACM Trans. Graphics, VOL. 16, pp. 109-154, 1997.
[18] S. Birchfield, “An Elliptical Head Tracker,” in Proc. IEEE Conf. Signal, System and Computers, VOL. 2, pp.1710-1714, 1997.
[19] L.G. Shapiro and G.C. Stockman, “Computer Vision,” New Jersey: Prentice Hall, 2001.
[20] 蘇木春, 張孝德, “機器學習:類神經網路、模糊系統以及基因演算法則”, 全華科技圖書股份有限公司, 2003.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2005-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡