博碩士論文 92541015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.142.43.151
姓名 戴炯峰(Chiung-Feng Tai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波/毫米波段之寬頻與低損耗金氧半導體頻段選擇濾波器之研製
(Design of Microwave / Millimeter-Wave Broadband and Low-Loss CMOS Band Selection Filters)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的目的是設計、分析和實現一個寬頻、低損耗在 0.18 微米互補式金氧半導體製程下的頻段選擇濾波器,並且應用於寬頻、低雜訊放大器與低相位雜訊振盪器的設計。在第一部份,我們利用四分之一波長電容補償平行耦合線及新型開迴路諧振腔,實現具有多個止帶衰減極點的低通濾波器及帶通濾波器。此種電容補償耦合線不僅縮小諧振腔長度,並且提供簡易方法實現雙頻段止帶濾波器。除了實現雙頻段止帶濾波器之外,我們利用此慢波結構實現毫米波振盪器。此外,基於外部交錯耦合電容及電晶體的寄生電容的特性,我們提出寬頻、低雜訊駐波振盪器設計方法及步驟。第二部分,我們使用0.18 微米和0.13 微米互補式金氧半導體的製程來實現寬頻、低損耗頻段選擇濾波器、低雜訊放大器與低相位雜訊振盪器。由於此頻段選擇濾波器具有寬頻止帶特性及簡易的對稱電路架構;此頻段選擇濾波器適合整合於多頻段、低雜訊放大器的輸出匹配電路。當低頻段操作(1.5-10.5 GHz),此雙頻段低雜訊放大器展現出超過 11.3 dB 輸出增益及低於 6.7 dB 雜訊參數。當在高頻段操作(11.3-13.5 GHz),此雙頻段低雜訊放大器展現出超過 9.7 dB 輸出增益及低於6.3 dB 雜訊參數。此外;此頻段選擇濾波器可用於低相位雜訊振盪器設計;利用二分之一波長之反相平行耦合線之等效參數及簡易的差動電晶體負載簡單完成初步的設計,並可建構一高特性的低相位雜訊振盪器。所提出的解析步驟與設計方法,可藉由理論分析與實作電路相互驗證,並且實現具有二階及三階諧波抑制能力的低相位雜訊振盪器。
摘要(英) The purpose of this dissertation is to develop broadband and low-loss band selection filters in microwave and millimeter-wave frequencies and their applications in standard CMOS-based technology, which include the a CG dual-band LNA for UWB and Ku band wireless receiver, and a X-band low phase noise oscillator for second and third harmonic frequency suppression. In the first part of this dissertation, the proposed dual band stopband filter and Q-band standing wave VCO with a novel dual mode loop resonator are presented. The proposed dual mode loop resonator not only significantly shorten the length of a resonator but also provide a frequency selection coupled structure (FSCS) to implement the dual band microstrip bandstop filter. The dual center frequencies of the BSF are designed at 2.1 (fs) and 6.4 GHz (3fs) with 20 dB fractional rejection bandwidth as over 100% and 10 %, respectively. In addition, the proposed dual mode loop resonator has low loss and much stronger selectivity than that of spiraling and meandering layouts, hence it is suitable to implement a tunable millimeter-wave VCO with a tunable P-N junction capacitiance technique. Theoretical prediction, simulation, and measurement demonstrate that the VCO achieves a tuning range from 38.77 to 43.62 GHz (BW = 12.5 %). The peak output power is 1.5 dBm with power efficiency of 3.8 % at 40.56 GHz. The minimum phase noise is -121dBc/Hz at 1 MHz offset.
In the second part of this dissertation, the band selection filters with a novel frequency-selecting coupling structure (FSCS) are proposed. Since, the proposed FSCS is realized by a slow wave anti-coupled line which is realized by a shorted circuit at a shunted transistor. The proposed lowpass filter and bandpass filter can be reconfigured by switching the on/off state of a transistor which presents either open or short termination of condition. Meanwhile, two reconfigurable transmission zeros can be produced for wide passband operation and wide stopband with good rejection level. Beside, the external cross coupled capacitance can improve the upper side passband selectivity and stopband bandwidth. The proposed filter features of compact size and good passband/stopband performance which is attractive to implement a CG dual-band LNA, and an X-band low phase noise oscillator applications.
關鍵字(中) ★ 雙頻段低雜訊放大器
★ 低相位雜訊振盪器
★ 頻段選擇濾波器
關鍵字(英) ★ Dual-Band LNA
★ Band Selection Filter
★ X-band low phase noise oscillator
論文目次 Chapter 1 Introduction.................................................................................................................. 1
1.1 Motivation................................................................................................................................ 2
1.2 Literature Survey..................................................................................................................... 5
1.3 Contributions...........................................................................................................................7
1.4 Dissertation Organization..................................................................................................... ..8
Chapter 2 Dual-band Microstrip Bandstop Filter using a Dual-mode Loop Resonator ......10
2.1 Introduction...........................................................................................................................10
2.2 Analysis and implement of Dual-Band Bandstop Filter….................................................11
2.3 Fabrication and Measurement…......................................................................................... 15
2.4 Summary…............................................................................................................................ 16
Chapter 3 Standing-wave VCO with slow-wave open loop resonator.................................. ..17
3.1 Introduction…………………………………………………............................................... 17
3.2 Coupling Structure of SWOL Description ......................................................................... 18
3.3 Design of Standing Wave VCO............................................................................................ 21
3.3.1 Standing Wave VCO Topology......................................................................................22
3.3.2 Operation and Characteristics of the Switching Amplifiers...........................................23
3.4 Fabrication and Measurement .............................................................................................26
3.5 Summary................................................................................................................................ 28
Chapter 4 Compact Band Selection Filter in 0.18-μm CMOS Technology and Application in Low Phase Noise X-band Oscillator…………………………………………........................... 29
4.1 Introduction…………………………………………............................................................29
4.2 Design and Implementation of the Band Selection Filter...................................................30
4.3 Simulation of the Band Selection Filter............................................................................... 33
4.4 Fabrication and Measurements……………….................................................................. ..35
4.5 Band Selection Filter for Low Phase Noise X-band Oscillator Design............................. 37
4.5.1 Design Principles.............................................................................................................37
4.5.2 Experiment Result...........................................................................................................40
4.5 Summary………………….................................................................................................... 41
Chapter 5 Band Selection Filter for UWB/Ku Dual-Band LNA in CMOS Process.............. 42
5.1 Introduction…………………………………………............................................................42
5.2 Analysis, Design, and Implementation of the BSF…......................................................... 44
5.2.1 Even-Mode Analysis of the BSF when Transistor Mn Operates in the Off or On State 46
5.2.2 Odd-Mode Analysis of the BSF when Transistor Mn Operates in Both Off and On States ………………………………….……………………………………………………...47
5.2.3 Verifications, Simulations and Measurements of the BSF …………………………….49
5.3 Wideband LNA Design...........................................................................................................52
5.3.1 Input Matching Circuits.................................................................................................. 52
5.3.2 Noise Analysis................................................................................................................ 53
5.3.3 Design Criterion of the Wideband LNA ........................................................................ 54
5.3.4 Output Buffer Design…………………………............................................................. 57
5.4 Simulation and Measurement Results……………........................................................... ..58
5.5 Summary.………………….................................................................................................... 61
Chapter 6 Conclusion and Future Work................................................................................... 63
References................................................................................................................................... 65
Publication List........................................................................................................................... 74
參考文獻 [1] J. Smuk and M. Shifrin, “Monolithic GaAs multi-throw switches with integrated low-power decoder/driver logic,” IEEE Radio Frequency Integrated Circuits Symp. Dig., pp. 47-50, 1999.
[2] H. Tosaka, et al, “An antenna switch MMIC using E/D mode p-HEMT for GSM/DCS/PCS/WCDMA bands application,” IEEE Radio Frequency Integrated Circuits Symp. Dig., pp. 519-522, 2003.
[3] Q. Li, Y. P. Zhang, K. S. Yeo, and W. M. Lim, “16.6- and 28-GHz fully integrated CMOS RF switches with improved body floating,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 339–345, Feb. 2008.
[4] A. Poh and Y. P. Zhang, “Design and analysis of transmit/receive switch in triple-well CMOS for MIMO wireless systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 3, pp. 458–466, Mar. 2007.
[5] S. Fouladi and R. R. Mansour, “Capacitive RF MEMS switches fabricated in standard 0.35- m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 478–486, Feb. 2010.
[6] W.-T. Tu and K. Chang, “Piezoelectric transducer-controlled dual-mode switchable bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 199–201, Mar. 2007.
[7] E. Fourn, A. Pothier, C. Champeaux, P. Tristant, A. Catherinot, P. Blondy,G. Tanne, E. Rius, C. Person, and F. Huret, “MEMS switchable interdigital coplanar filter,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 320–324, Jan. 2003
[8] Y.-H. Shu, J. A. Navarro, and K. Chang, “Electronically switchable and tunable coplanar waveguide-slotline band-pass filters,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 3, pp. 548–554, Mar. 1991.
[9] T.-Y. Yun, and K. Chang, “Piezoelectric-transducer-controlled tunable microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1303–1310, May 2002
[10] A. Abbaspour-Tamijani, L. Dussopt, and G. M. Rebeiz, “Miniature and tunable filters using MEMS capacitors,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 7, pp. 1878–1885, Jul. 2003
[11] B. Lui, F. Wei and X. Shi, “Switchable bandpass filter with two-state frequency responses,” Electronics. Lett., vol. 47, no. i, 6th January. 2011.
[12] Zhang, X.Y., and Xuei, Q, “Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators,” IEEE Trans. Microw. Theory Tech., 2007, 55, (10), pp. 2183–2190.
[13] A. Gorur, “Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 671–677, Feb. 2004.
[14] W. H. Tu and K. Chang, “Compact microstrip bandstop filter usingopen stub and spurline,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 268–270, Apr. 2005.
[15] C. Y. Hang,W. R. Deal, T. Qian, and T. Itoh, “High efficiency transmitter front-ends integrated with planar an PBG,” in Asia-Pacific Microwave Conf. Dig., Dec. 2000, pp. 888–894.
[16] J.-Y. Kim and H.-Y. Lee, “Wideband and compact bandstop filter structure using double-plane superposition,” IEEE Microw. Wireless Compon. Lett, vol. 13, no. 7, pp. 279–280, Jul. 2003.
[17] Yabuki H., Sagawa M., Matsuo M., Makimoto M.: ’Stripline dual-mode ring resonators and their application to microwave devices’ IEEE Trans. Microw. Theory Tech., 1996, 44, PP. 723-729
[18] Lung-Hwa Hsieh., Kai Chang.: ‘Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters’ IEEE Trans. Microw. Theory Tech., 2005, 53, PP. 861-867
[19] Wei Tong, and Hu, Z.R, ”Compact Left-handed Dual Mode Notch Bandstop Filter,” IEEE MTT-S INT. MICROW. Symp. Dig., 2006, 2, PP. 1261-1264
[20] Guyette, A.C., Hunter, I.C., Pollard, R.D., and Jachowski, D.R, “Perfectly-matched bandstop filters using lossy resonators,” IEEE MTT-S INT. MICROW. Symp. Dig., 2005, PP. 517-520
[21] Jia-Sheng Hong, “Microstrip dual-mode band reject filter,” IEEE MTT-S INT. MICROW. Symp. Dig., 2005, PP. 945-948
[22] Sheen J.-W, “A compact semi-lumped low-pass filter for harmonics and spurious suppression,” IEEE Microw. Wirel. Compon. Lett., 2000, 10, (3), PP. 92-93
[23] Amari S, “Direct synthesis of folded symmetric resonator filters with source-load coupling, “ IEEE Microw. Wirel. Compon. Lett., 2001, 11, (6), PP. 264-266
[24] L. K. Yeung and K.-L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337–341, Feb. 2003.
[25] C.-W. Tang, Y.-C. Lin, and C.-Y. Chang, “Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 10, pp. 2112–2118, Oct. 2003.
[26] C.-F. Chang and S.-J. Chung, “Bandpass filter of series configuration with two finite transmission zeros using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2383–2388, Jul. 2005
[27] C. W. Tang and S. F. You, “Concurrent design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717–723, Feb. 2006.
[28] Y.-H. Chun, J. S. Hong, P. Bao, T. J. Jackson, and M. J. Lancaster,“BST-varactor tunable dual-mode filter using variable ZC transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, pp.167–169, Mar. 2008.
[29] B. Lui, F. Wei and X. Shi, “Switchable bandpass filter with two-state frequency responses,” Electronics. Lett., vol. 47, no. i, 6th January. 2011.
[30] C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen, “Design of 60-GHz millimeter-wave CMOS RFIC-on-chip bandpass filter,” in Proc. 37th Eur. Microw. Conf., Oct. 2007, pp. 672–675.
[31] D. M. Pozar, Microwave engineering, 2nd ed. New York: Wiley, 1997.
[32] D. K. Shaeffer and S. Kudszus "Performance-optimized microstrip coupled VCOs for 40-GHz and 43-GHz OC-768 optical transmission", IEEE J. Solid-State Circuits, vol. 38, pp. 1130 2003.
[33] Shi, D., East, J., and Flynn, M.P, ”A Compact 5 GHz standing-wave resonator-based VCO in 0.13-μm CMOS,” IEEE Radio Frequency Integrated Circuits Symp., Honolulu, HI, USA, June 2007, pp. 591–594
[34] Jun-Chau, Chien., and Liang-Hung, Lu, “Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture,” IEEE J. Solid-State Circuits, 2007, 42, (9), pp. 1942–1952
[35] Hsien-Ku, Chen., Hsien-Jui, Chen., Da-Chiang, Chang., Ying-Zong, Juang., and Shey-Shi, Lu, “A 0.6 V, 4.32 mW, 68 GHz low phase-noise VCO with intrinsic-tuned technique in 0,13,” IEEE Microw. Wirel. Compon. Lett., 2008, 18, (7), pp. 467-469
[36] Plouchart, J.-O., Zamdmer, N., Trzcinski, R., Kun Wu, Gross, B.J., and Moon Kim, “A 44 GHz differentially tuned VCO with 4 GHz tuning range in 0.12 μm SOI CMOS,” IEEE ISSCC Conf. Tech. Dig., February 2005, pp. 416–607
[37] Ming, Li., and Amaya, R.E, “Design of mM-W Fully Integrated CMOS Standing-Wave VCOs Using Low-Loss CPW Resonators,” IEEE Trans., on Circuits and Systems II: Express Briefs, 2012, 59, (2), pp. 72-82.
[38] J. Quirarte and J. Starski, “Novel Schiffman phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 1, pp. 9–14, Jan. 1993.
[39] Y. Guo, Z. Zhang, and L. Ong, “Improved wideband Schiffman phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp.1196–1200, Mar. 2006.
[40] WIN Semiconductor Corporation [Online]. Available: http://www. winfoundry.com/
[41] C. Lugo, and J. Papapolymerou, “Dual mode reconfigurable filter with asymmetrical transmission zeros and center frequency control,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 499–501, Sep. 2006.
[42] W.-T. Tu, and K. Chang, “Piezoelectric transducer-controlled dual-mode switchable bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 199–201, Mar. 2007.
[43] M.F. Karim, A.Q. Liu, A. Alphones, and A.B. Yu, “A Reconfigurable Micromachined switching filter using periodic structures,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp.1154–1162, June 2007.
[44] W. H. Tu, “Switchable microstrip bandpass filters with reconfigurable on-state frequency responses,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 259–261, May 2010.
[45] M.F. Karim, Yong-Xin Guo, Z.N. Chen, and L.C. Ong, “Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes”, IEEE International Microwave Symposium Dig., Boston, USA, PP. 509 – 512, June 2009.
[46] H. Shaman, and J.-S. Hong, “Input and output cross-coupled wideband bandpass filter,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2562–2568, Dec 2007.
[47] E. Park and C. Seo, “Low phase noise oscillator using microstrip square open loop resonator,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 585 2006.
[48] Jonghoon Choi. Nick, M. Mortazawi, “Low Phase-Noise Planar Oscillators Employing Elliptic-Response Bandpass Filters,” IEEE Trans. Microw. Theory Tech., vol. 5, no. 8, pp. 1959 - 1965, Aug. 2009.
[49] H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, “A low phase-noise CMOS VCO with harmonic tuned LC Tank,” IEEE Trans. Microw. Theory Tech., vol.54, no.7, pp. 2917-2924, July 2006.
[50] J. Choi, and C. Seo, “Low phase noise VCO using output matching network based on novel harmonic control circuit,” Microwave and Optical Technology Letters, vol.51, no.8, pp. 1838-1842, August 2009.
[51] Q. Xue, K. M. Shum, and C. H. Chan, “Novel oscillator incorporating a compact microstrip resonant cell,” IEEE Microwave and Wireless Components Letters, vol. 11, pp. 202-204, May 2001.
[52] J. Shi, J. X. Chen, and Q. Xue, “A differential voltage-controlled integrated antenna oscillator based on double-sided parallel-strip line,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2207–2212, Oct. 2008.
[53] S. Wu, and B. Razavi, “A 900-MHz/1.8 GHz CMOS receiver for dual band applications,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2178-2185, May 1998.
[54] K. R. Rao, J. Wilson, and M. Ismail, “A CMOS RF front-end for a multi standard WLAN receiver,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 321-323, May 2005.
[55] H. Song, H. Kim, J. Choi, C. Park, and B. Kim, “A sub-2 dB NF dual-band CMOS LNA for CDMA/WCDMA applications,” IEEE Microwave Wireless Comp. Lett., vol. 18, no. 3, pp. 212-214, Mar. 2008.
[56] L. H. Lu, H. H. Hsieh, and Y. S. Wang, “A compact 2.4/5.2 GHz CMOS dual-band low-noise amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 685-687, Oct. 2005.
[57] H. S. Jhon, I. Song, J. Jeon, H. Jung, M. Koo, B. G. Park, J. D. Lee, and H. Shin, “8mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application,” Electron. Lett., vol. 44, no. 23, pp. 1353-1354, Nov. 2008.
[58] M. Chen, and J. Lin, “A 0.1-20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 323-325, May 2009.
[59] T. Chang, J. Chen, L. A. Rigge, and J. Lin, “A packaged and ESD-protected inductorless 0.1-8 GHz wideband CMOS LNA,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 416-418, Jun. 2008.
[60] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An ultra-wideband CMOS low noise amplifier for 3-5 GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544-547, Feb. 2005.
[61] A. Ismail, and A. Abidi, “A 3 to 10 GHz LNA using a wideband LC-ladder matching network,” in IEEE ISSCC Dig. Tech. Papers, 2004, pp. 384-385.
[62] A. Bevilacqua, and A. M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver,” in IEEE ISSCC Dig. Tech. Papers, 2004, pp. 382-383.
[63] F. Zhang, and P. R. Kinget, “Low-power programmable gain CMOS DA,” IEEE J. Solid-State Circuits., vol. 41, no. 6, pp. 1333-1343, Jun. 2006.
[64] Y. H. Yu, Y. J. Chen, and D. Heo, “A 0.6-V low power UWB CMOS LNA,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 229-231, Mar. 2007.
[65] Y. Shim, C. W. Kim, J. Lee, and S. G. Lee, “Design of full band UWB common-gate LNA,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 721-723, Oct. 2007.
[66] K. H. Chen, J. H. Lu, B. J. Chen, and S. I. Liu, “An ultra-wide-band 0.4-10-GHz LNA in 0.18 um CMOS,” IEEE Trans. Circuits Syst. II, vol. 54, no. 3, pp. 217-221, Mar. 2007.
[67] C. F. Liao, and S. I. Liu, “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329-339, Feb. 2007.
[68] G. Matthaei, L. Young, and E. T. Jones, “Microwave Filters, Impedance-Matching Networks, and Coupling Structures,” Norwood, MA. Artch House, 1980.
[69] C. H. Chen, M. J. Deen, Y. Cheng, and M. Matloubian, “Extraction of the induced gate noise, channel noise, and their correlation in submicron MOSFETs from RF noise measurements,” IEEE Trans. Electron Devices, vol. 48, no. 12, pp. 2884-2892, Dec. 2001.
[70] Y. Lu, K. S. Yeo, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, “A novel CMOS low-noise amplifier design for 3.1 to 10.6 GHz ultra-wide-band wireless receivers,” IEEE Trans. Circuits Syst. I, vol. 53, no. 8, pp. 1683-1692, Aug. 2006.
[71] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759,May 1997.
[72] A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. V. Langevelde, R. J. Havens, P. W. Vreede, R. F. Roes, P. H. Woerlee, A. H. Montree, and D. B. Klaassen, “Accurate thermal noise modeling for deep-submicron CMOS,” in IEDM Tech. Dig., 1999, pp. 155-158.
[73] A. J. Scholten, L. F. Tiemeijer, R. V. Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 618-632, Mar. 2003.
[74] W. C. Huang, C. M. Hsu, C. M. Lee, H. Y. Huang, and C. H. Luo, “Dual band LNA/mixer using conjugate matching for implantable biotelemetry,” IEEE International Symp, 2008, pp. 1764-1767.
[75] Yu. M. Ward, R.J. Newgard, R.A. Urteaga, M, “A compact 43-GHz monolithic differential VCO in 0.5-μm InP DHBT technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 281-283, May. 2006.
[76] M. Sanchez-Renedo, “High-selectivity tunable planar combline filter with source/load-multiresonators coupling,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 513–515, Jul. 2007.
[77] M. A. El-Tanani and G. M. Rebeiz, “Corrugated microstrip coupled lines for constant absolute bandwidth tunable filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 4, pp. 956–963, Apr. 2010.
[78] A. I. Abunjaileh and I. C. Hunter, “Tunable bandpass and bandstop filters based on dual-band combline structures,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3710–3719, Dec. 2010.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2012-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明