博碩士論文 92622001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.80.223.123
姓名 劉宜諺(Yi-Yen Liu)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 邊界條件及滲漏補注對地下水流分數維度之影響
(The influence of boundary conditions and leakage on the fractional groundwater flow dimensionality)
相關論文
★ 微水試驗以兩階段式方法推估薄壁因子與含水層水力導數★ 受負薄壁效應影響微水實驗參數推估方法
★ 受薄壁效應影響的單井抽水試驗推估 非受壓含水層水文參數之研究★ 利用積分轉換求解定水頭部分貫穿井之混合邊界值問題
★ 定水頭部分貫穿汲水推估非受壓含水層水文參數之方法★ 單井循環流水力實驗之理論改進與發展
★ 高滲透性含水層微水實驗 壓力反應之分析★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 地表下NAPL監測技術-薄膜擴散採樣器之發展★ 垂直異質性對推估流通係數的影響
★ 水文地層剖析儀與氣壓式微水試驗儀調查淺層含水層水力傳導係數之研究★ Evaluation and management of groundwater resource in Hadong area of Vietnam using groundwater modeling
★ 利用時間分數階移流模式對非反應性示蹤劑在裂隙介質的分析★ 時間分數階傳輸模式對反應性示蹤劑砂箱實驗之分析
★ 利用雙封塞微水試驗推估裂隙含水層水力傳導係數★ 多深度微水試驗之測試段長度對水力傳導係數影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 裂隙含水層普遍存在地表之下較深處,當進行水力實驗以分析裂隙含水層水文地質狀況時,需要選用合適之水井水力學模式。廣義徑向流模式以地下水流分數維度描述地下水流經截面積隨距離之變化,為分析裂隙含水層水文地質特徵常用模式之ㄧ。壓力微分大時間斜率可用以分析廣義徑向流模式之地下水流維度,但用以分析受定水頭邊界、不透水邊界及滲漏補注洩降資料之地下水流維度並非完全正確。本研究以標準曲線匹配方式,分析徑向流在單一定水頭邊界、單一不透水邊界及滲漏補注之地下水流維度,並與壓力微分大時間斜率分析結果比較,證實壓力微分大時間斜率不適用於分析非碎型幾何模式之地下水流維度。此外,進一步分析二互相垂直不透水邊界、互相垂直定水頭邊界、二互相垂直之不透水及定水頭邊界洩降,發現二互相垂直不透水邊界洩降變化完全不符合廣義徑向流模式,而其他不同水文地質邊界與滲漏補注洩降資料,所得地下水流維度非唯一,水力傳導係數及比儲水係數值隨地下水流維度增加而減小,且均不等於真實值,顯示邊界條件與滲漏補注無法由地下水流分數維度吸收。加入邊界條件時,已不滿足廣義徑向流模式需保持徑向流之特性。因此邊界條件與滲漏補注以廣義徑向流模式代表並無意義。
摘要(英) The problem that arises when analyzing data from a hydraulic test is that of choosing an appropriate geometry for the fractured system into which flow occurs. Generalized radial flow model which considers fractional dimensions is a common method to analyze the hydraulic test data in fractured aquifer. The late-time slope of the pressure derivative can aid to determine the flow dimensions of generalized radial flow model, but it is not totally correct to determine the flow dimensions of the hydrogeologic conditions, including constant head boundary, impermeable boundary, and leakage. We analyze the flow dimensions of the radial flow with a linear constant head boundary, a linear impermeable boundary, and leakage by type curves fitting, and compare with the analyzing results by the late-time slope of the pressure derivative. According to the comparisons, we prove that the late-time slope of the pressure is not suitable to determine the flow dimensions of nonfractal model. Moreover, we also analyze the drawdown data of radial flow with two perpendicular constant head boundaries, two perpendicular impermeable boundaries, and a constant head boundary perpendicular to an impermeable boundary. The drawdown date of two perpendicular impermeable boundaries can not match generalized radial flow model. The flow dimensions of other boundary conditions and leakage are not unique, and the hydraulic conductivity and the specific storage do not equal to hypothetical values. The boundary conditions and leakage can not be substituted by variable flow dimensions.
關鍵字(中) ★ 地下水流分數維度
★ 邊界條件
★ 滲漏補注
★ 壓力微分
★ 標準曲線匹配
關鍵字(英) ★ boundary conditions
★ leakage
★ pressure derivative
★ type curves fitting
★ fractional dimension
論文目次 目錄 i
圖目錄 iii
表目錄 vi
符號說明 vii
第一章 背景與目的 1
1.1 前言 1
1.2 研究目的 9
第二章 水文地質邊界及滲漏洩降資料建立 10
2.1 廣義徑向流理論模式介紹 10
2.1.1 薄壁效應及井管儲蓄效應 10
2.1.2 假設及數學模式 11
2.1.3 K、Ss、Cw及Sk之參數敏感度分析 13
2.2 水文地質邊界 15
2.2.1 單一定水頭邊界 15
2.2.2 單一不透水邊界 17
2.2.3 二互相垂直之水文地質邊界 18
2.3 滲漏補注 22
第三章 資料分析與結果 26
3.1 廣義徑向流模式標準曲線分析方式 26
3.1.1 曲線匹配與參數推估過程 26
3.2 壓力微分分析方式 29
3.3 廣義徑向流模式標準曲線分析結果 30
3.3.1 單一定水頭邊界洩降資料分析結果 30
3.3.2 參數推估結果驗證 36
3.3.3單一不透水邊界洩降資料分析結果 37
3.3.4 二互相垂直水文地質邊界洩降資料分析結果 40
3.3.5 滲漏洩降資料分析結果 48
3.4 案例討論 48
第四章 結論 53
參考文獻 54
附錄一 壓力微分曲線大時間斜率與GRF模式關係驗證 58
附錄二 GRF數學模式無因次化及求解過程 59
參考文獻 Acuna, J. A., and Y. C. Yortsos, Application of fractal geometry to the study of networks of fractures and their pressure transient, Water Resour. Res., 31(3), 527-540, 1995.
Agarwal, R. G., R.Al-Hussainy, and H. J. Ramey, Jr., An investigation of wellbore storage and skin effect in unsteady liquid flow, 1, Analytical treatment, Trans. Soc. Pet. Eng. AIME, 249, 279-290, 1970.
Barenblatt, G. I., Yu. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, Prikl. Mat. Mekh, 24(5), 852-864, 1960.
Barker, J. A., A generalized radial flow model for hydraulic tests in fractured rock, Water Resour. Res., 24(10), 1796-1804, 1988.
Boulton, N. S., and T. D. Streltsova, Unsteady flow to a pumped well in a fissured aquifer with a free surface level maintained constant, Water Resour. Res., 14, 527-532, 1978.
Brodsky, E. E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga, A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophy. Res., 108(B8), 2390, doi: 10.1029/2002JB002321, 2003.
Butler, J. J., Jr., Pumping tests in nonuiform aquifers – the radially symmetric case, J. Hydrol., 101, 15-30, 1988.
Chang, C. C., and C. S. Chen, An integral transform approach for a mixed boundary problem involving a flow partially penetrating well with infinitesimal well skin, Water Resour. Res., 38(6), doi: 10.1029/2001WR001091, 2002.
Chen, C. S., and C. C. Chang, Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effects: field experiment and data analysis, Water Resour. Res., 38(5), doi: 10.1029/2001WR000300, 2002.
Chu, W. C., J. Garcia-Rivera, and R. Raghavan, Analysis of interference test data influenced by wellbore storage and skin at the flowing well, J. Pet. Tech., 171-178, 1980.
Le Borgne, T., O. Bour, J. R. de Dreuzy, P. Davy, and F. Touchard, Equivalent mean flow model foe fractured aquifers: Insights from a pumping tests scaling interpretation, Water Resour. Res., 40, W03512, doi: 10.1029/2003WR002436, 2004.
de Hoog, F. R., J. H. Knight, and A. N. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM Journal of Scence and Statistics Computation., 3(3), 357-366, 1982.
Freeze, A. R., and J. A. Cherry, Groundwater, Prntice Hall, Inc., 604pp, 1979.
Hamm, S. Y., and P. Bidaux, Dual-porosity fractal models for transient flow analysis in fissured rock, Water Resour. Res., 32(9), 2733-2745, 1996.
Hantush, M. S., and C. E. Jacob, Nonsteady radial flow in an infinite leaky aquifer, Eos Trans. AGU, 36(1), 95-100, 1955.
Hyder Z., J. J. Butler Jr., C. D. McElwee, and W. Z. Liu,Slug tests in partially penetrating wells, Water Resour. Res., 30(11),2945-2957, 1994.
Kazemi, H. P., Pressure transient analysis of naturally fractured reservoirs with uniform fracture distributions, Trans. Soc. Pet. Eng., 246, 451-462, 1969.
Kuusela-Lahtinen, A., A. Niemi, and A. Luukkonen, Flow dimension as an indicator of hydraulic behavior in site characterization of fractured rock, Ground Water, 41(3), 333-341, 2003.
Lai, R. Y., and C. Su, Nonsteady flow to a large well in a leaky aquifer, J. Hydrol., 22, 333-345, 1974.
Marechal, J. C., B. Dewandel, K. Subrahmanyam, Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer, Water Resour. Res., 40, W11508, doi: 1029/2004WR003137, 2004.
Mishra, S., Methods for analyzing single- and multi-well hydraulic test data, in Grimsel Test Site: Interpretatin of Crosshole Hydraulic Tests and a Pilot Fluid Logging Test for Selected Boreholes Within the BK site, edited by S. Vomvoris and B. Frieg, NAGRA Tech. Rep. NTB 91-09, Natl. Coop. for the Disposal of Radioactive Waste, Wettingen, Switzerland, 1992.
Moench,A. F., Transient flow to a large-diameter well in an aquifer with storative semiconfining layers, Water Resour. Res., 21(8), 1121-1131,1985.
Ramey, H. J., Jr., and R. G. Agarwal, Annulus unloading rates as influenced by wellbore storage and skin effect, Trans. Soc. Pet. Eng. AIME, 253, 453-462, 1972.
Sneddon, I. N., The Use of Integral Transforms, 540pp., McGraw-Hill, New York, 1974.
Spane, F. A., Jr., and S. K. Wurstner, DERIV: A computer program for calculating pressure derivatives for use in hydraulic test analysis, Ground Water, 31(5), 814-822, 1993.
Streltsova, T. D., Well Testing in Heterogeneous Formations, An Exxon Monograph, John Wiley and Sons, N.Y., 413pp, 1988.
van Everdingen, A. F., The skin effect and its influence on the productive capacity of a well, Trans. Am. Inst. Min. Metall. Pet. Eng., 198, 171-176, 1953.
Walker, D. D., and R. M. Roberts, Flow dimensions corresponding to hydrogeologic conditions, Water Resour. Res., 39(12), 1349, doi:10.1029/2002WR001511, 2003.
Warren, J. E., and P. J. Root, The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245-255, 1963.
指導教授 陳家洵(Chia-Shyun Chen) 審核日期 2006-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明