博碩士論文 92622009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.145.64.241
姓名 李炘旻(Hsin-Min Li)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 2003年台東成功地震之同震變形模式研究
(Modeling studies on Coseismic deformation associated with the 2003 Chengkung, eastern Taiwan, earthquakes)
相關論文
★ 利用S波與尾波探求蘭陽平原局部場址效應★ 以地表位移量推算921地震時車籠埔斷層之錯動參數
★ 利用921地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究★ 1999年集集地震序列強地動峰值隨方位角變動及以偏極化分析輔助地震定位方法之研究
★ 九二一集集大地震序列各地累積絕對速度值(CAV)之研究★ 以反應譜比值法推求地震時結構物振動行為之研究
★ 紅河斷裂帶地震活動以及東南亞地殼與上部地函構造之研究★ 台灣地區地震危害度的不確定性分析與參數拆解
★ 台灣小規模地震再發統計模式參數研究★ 台灣ShakeMap震度之研究-以九二一集集地震序列為例
★ 集集地震之震前、同震及震後變形模式研究★ 斷層錯動、地殼變位及強地動與地震災害相關性之研究: 以1935年及1999年台灣中部兩次地震為例
★ 利用傅氏振幅譜比法分析全台灣強震站的場址★ 以Gamma Model對台灣餘震叢集現象之研究
★ 台灣西南部GPS資造時間序列分析與地殼變形模式研究★ 機率式地震誘發山崩危害度分析–以國姓地區為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球衛星定位系統(GPS)已經成為地殼變動及地體動力學研究的利器,連續密集的GPS觀測可以有效的用於偵測震前、同震和震後變形。2003年12月10日4時38分(UTC時間),台東成功發生Mw=6.5之地震,GPS觀測的地表最大水平及垂直同震位移分量分別為126 mm及263 mm (近震央位置)。本研究使用GPS所觀測到的成功地震地表同震變形資料,以彈性半無限空間錯位模式,逆推最佳的斷層參數以及斷層面上的同震滑移量分佈,試圖了解震源斷層的特性及幾何型貌。
根據已知的斷層分佈圖,我們將縱谷斷層中段分為南北兩個走向略為不同的子斷層;又由餘震分佈資料獲知斷層在淺層之傾角較大,進入深部後,傾角趨於平緩,故將斷層分為淺層及深部兩個不同傾角的子斷層,共四個子斷層。模式中,約制南北兩斷層的長度皆為45 km,深部斷層寬度為50 km,斷層走向分別為:北段N25.3°E、南段N22°E。經過一連串的搜尋,我們獲得其餘三個斷層參數的最佳解:淺層斷層傾角(Dip1)為59°、深部斷層傾角(Dip2)為30°,淺層與深部斷層連接處深度(D)為21 km,平均滑移量為166 mm。最大同震滑移量為855 mm,約位於震源南方15 km處,而地震矩為3.4 10 dyne-cm。本研究為補強格點搜尋無法估計參數信心區間的缺點,針對三個斷層參數Dip1、Dip2及D,另外利用拔靴法(bootstrap)加以搜尋;而所求三個參數之最佳解分別為,59°、28°及22 km,與格點搜尋結果相近。在95%的信心區間下,分別落於48°~63°、5°~35°及18~27 km,顯示對於深部斷層傾角(Dip2)較無法解析。
而在震後變形部分,則分別對震後初期(0.1年內)及震後120天兩種不同衰減模式做擬合。初步結果發現其震後變形初期,大致上以 之對數函數模式為主;而在震後120天內,則大多以 之指數函數模式來加以描述,其各測站之分量震後鬆弛時間不盡相同。若要對其物理機制作更多解釋,則未來必須利用更長的資料及更嚴密之模式加以計算,並有賴其他相關地球物理研究共同討論。
摘要(英) Global Positioning System (GPS) has become an efficient tool for studying the seismic deformation and geodynamics. Dense continuous GPS data can be used in investigating the preseismic, coseismic and postseismic deformations. The Mw6.5 Chengkung earthquake occurred at 04:38 on 10 December 2003. The GPS observed coseismic displacements reached 126 mm and 263 mm in the horizontal and vertical components, respectively. Using the coseismic surface displacements of Chengkung earthquake, the optimal parameters of fault geometry and coseismic slip rate on the seismogenic fault are inverted by assuming a simple fault model in elastic half-space.
According to the geologically recognized fault traces, the middle Longitudinal Valley Fault (LVF) is divided into two sub-faults with two a little bit different strikes. The distribution of the aftershocks shows that the dip of the seismogenic fault is larger in the shallow part, while then become smaller in the deeper part. Therefore, we divide each segment of fault into shallow and deep subfaults with different dip-angles. In our model, we define the length of each sub-fault to be 45 km, the width of the deep ones to be 50 km, and the strikes of the north and the south ones are N25.3∘E and N22∘E, respectively. Through a series of systematic searches, the optimal solutions of the three unknown parameters, the dip of the shallow sub-faults (Dip1 = 59∘), the dip of the deep sub-faults (Dip2 = 30∘) and the depth of the interface between shallow and deep sub-faults (D = 21 km) are derived. The average slip is 166 mm; the maximum coseismic slip is 855 mm and is located 15 km to the south of the hypocenter. The GPS derived seismic moment is 3.4*1025 dyne-cm. The bootstrap method is employed to estimate the confidence intervals of the three parameters, Dip1, Dip2 and D. The optimal solutions derived from bootstrap are 59∘, 28∘ and 22 km, respectively, which are consistent with the results from the grid search. Under 95% confidence intervals, the above three parameters are ranged from 48∘to 63∘, 5∘to 35∘ and 18 to 27 km, respectively. It indicates that the deep fault dip (Dip2) is less resolvable.
For the postseismic deformation, we focus on fitting the transient decay forms of the primary (< 0.1 year) and the first four months of the postseismic data. The results show that the data are well fit by the logarithmic function a + b log10(t), during the primary of postseismic deformation. During the first four months, it is well fit by the exponential function a0 +a1 e-t/t, and the relaxation time of each component for each station are not quite the same. If we want to investigate the basic physical mechanism of postseismic deformation, more longer period of GPS data and a more sophisticated model are required in the future.
關鍵字(中) ★ 成功地震
★ 同震變形
關鍵字(英) ★ Chengkung earthquake
★ coseismic displacement
論文目次 中文摘要……………………………………………………………….…i
英文摘要…………………………………………………………………ii
致謝…………..……………………………………………………….....iv
目錄…………..…………………………………………………………..v
圖目……………..……………………………………………………...viii
表目……………….……………………………………………………..xi
第一章、緒論............................................................................................1
1.1 研究動機及目的.............................................................................1
1.2 研究內容.........................................................................................1
1.2.1 緒論......................................................................................2
1.2.2 地質概況及相關前人研究..................................................2
1.2.3 GPS衛星測量原理及資料處理...........................................2
1.2.4成功地震之同震變形模式研究...........................................2
1.2.5成功地震之震後變形...........................................................2
1.2.6討論與結論............................................................................2
第二章、地質概況及相關前人研究..........................................................4
2.1 地質及地理概況.............................................................................4
2.1.1 中央山脈東翼......................................................................4
2.1.2 花東縱谷..............................................................................5
2.1.3 海岸山脈..............................................................................6
2.1.4 活斷層分佈情形..................................................................7
2.2 相關前人研究...............................................................................10
2.2.1 地質構造…........................................................................10
2.2.2 地震活動觀測....................................................................10
2.2.3 重力觀測............................................................................11
2.2.4 地殼變動觀測....................................................................11
第三章、GPS衛星測量原理及資料處理................................................13
3.1 GPS 衛星測量...............................................................................13
3.2 GPS 資料誤差來源與解決方法...................................................13
3.2.1 衛星軌道誤差....................................................................14
3.2.2 衛星及接收儀時錶誤差....................................................14
3.2.3 固定站座標誤差................................................................15
3.2.4 對流層延遲誤差................................................................16
3.2.5 電離層延遲誤差................................................................16
3.2.6 跳週之影響........................................................................17
3.2.7 整數週波未定值求解誤差................................................17
3.2.8 雜訊及多路俓效應............................................................18
3.2.9 相位中心偏移誤差............................................................18
3.3 GPS資料處理................................................................................18
3.4研究區域之GPS資料選取及結果................................................24
3.4.1 資料選取............................................................................24
3.4.2 成功地震之地表同震位移結果........................................28
第四章、成功地震同震變形模式之研究................................................32
4.1 彈性半無限空間錯位模式...........................................................32
4.1.1 點源部分............................................................................33
4.1.2 有限矩形源........................................................................34
4.2 錯位模型參數逆推方法及設定...................................................36
4.3 錯位模式逆推研究與結果討論...................................................39
4.3.1 子斷層個數及β值的搜尋結果........................................39
4.3.2 斷層幾何參數的搜尋結果................................................39
4.3.3 拔靴法(bootstrap)之計算結果………………………….41
4.3.4 斷層面上同震滑移量之逆推結果....................................42
4.3.5 模型值與觀測值之擬合結果............................................43
4.3.6 錯位模式測試與比較........................................................43
第五章 成功地震之震後變形................................................................76
5.1 震後變形之模式...........................................................................77
5.1.1 震後初期(0.1年內)之衰減模式.......................................77
5.1.2 震後120天之衰減模式.....................................................78
第六章 討論與結論................................................................................99
參考文獻................................................................................................101
參考文獻 參考文獻
York, James E.,東臺灣的第四紀斷層活動。臺灣省地質調查所彙刊,第二十五號,第63-72頁,1976。
顏滄波,台灣北部大南澳片岩之地層學的研究,台灣省地質調查所彙刊,第十二號,53-66,1960。
畢慶昌,東台灣裂谷,台灣石油地質,第四號,93-106,1965。
顏滄波,台灣東部海岸山脈之火山地質,中國地質學會會刊,第十一號,74-88,1968。
鄧屬予、王源,海岸山脈的島弧體系,中國地質學會會刊,第二十四號,99-112,1981。
何春蓀,臺灣地質概論-臺灣地質圖說明書,增訂第二版,經濟部中央地質調查所出版,共164頁,1986。
胡錦城、陳武雄,台灣東部之重力與磁力異常,中國地質學會專刊,第七號,341-352,1986。
余水倍,台東縱谷地區之地殼變形研究。國立中央大學地球物理研究所博士論文,1989。
楊榮堃,台灣台東縱谷南段重力與地質之研究,國立中央大學地球物理研究所博士論文,1990。
張中白,海岸山脈利吉混同層與台灣東南海域花東海脊的成因比較。國立台灣大學地質研究所碩士論文,1996。
余水倍、郭隆晨、許雅儒、劉啟清、蘇宣翰,1999年集集大地震之震後變形,中國地質年會八十九年年會暨學術研討會,2-4 頁,2000。
郭隆晨,高精度GPS衛星測量在地殼變形觀測之研究。國立交通大學土木研究所博士論文,2000。
張育城,台東縱谷(瑞穗至池上地區)之地電研究。國立中央大學地球物理研究所碩士論文,2002。
許雅儒,集集地震之震前、同震及震後變形模式研究。國立中央大學地球物理研究所博士論文,2004。
蔡旻倩,台灣西南部GPS資料時間序列分析與地殼變形模式研究。國立中央大學地球物理研究所碩士論文,2004。
林欣儀,台灣地震震源尺度分析:2003年規模>6.0第震分析。國立中央大學地球物理研究所碩士論文,2004。
Angelier, J., H.T. Chu, and J.C. Lee, Shear concentration in a collision zone: kinematics of the active Chihshang fault, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274, 117-144, 1997.
Barrier, E., Angelier, J., Active conllision in eastern Taiwan, coastal Range. Mem. Geol. Soc. China ,7, 135-155, 1986.
Beutler, G., I. Bauerrsima, W. Gurtner, M. Rothacher, and T. Schildknecht, Atmospheric refraction and other important biases in GPS carrier phase observations, Monofraph 12, School of Surveying, University of New South Wales, Kensington, 15-43, 1988.
Chen H.Y., Yu, S.B., Kuo L.C., and Liu C.C., Coseismic and postseismic displacements of the 10 Decem ber 2003(Mw6.5)Chengkung, eastern Taiwan,earthquake, 2005.
Dong, D., and Y. Bock, GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California, J. Geophys. Res., 94,3949-3966, 1989.
Gurtner, W., G. Beutler, I. Bauersima, and T. Schildtknecht, Evaluation of GPS carrier difference observation: The Bernese second generation software package. First International Symposium on Precise Positioning with the GPS, Maryland, Rockville, 1985.
Hsu, T. L., Geology of the Coastal Range, eastern Taiwan. Bull. Geol. Surv. Taiwan, 8, 39-64, 1956.
Hsu, T. L., Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China, 1, 95-102, 1962a.
Hsu, T. L., A study of the coastal geomorphology of Taiwan. Proc. Geol. Soc. China, 5, 29-45, 1962b.
Hsu, T. L., Neotectonics of the Longitudinal Valley, eastern Taiwan. Bull. Geol. Surv. Taiwan, 25, 53-62, 1976a.
Hsu, T. L., The Lichi mélange of the Coastal Range, Eastern Taiwan. Bull. Geol. Surv. Taiwan, 25, 87-95, 1976b.
Hsu, T. L. and Chang, H. C., Quaternary faulting in Taiwan. Mem. Geol. Soc. China, 3, 155-165, 1979.
Hsu, Y. J., N. Bechor, P. Segall, S. B. Yu, L. C. Kao and K. F. Ma. Rapid afterslip following the 1999 Chi-Chi, Taiwan Earthquake, Geophys. Res. Lett., 29, doi:10.1029/2002GL014967, 2002.
Hsu, Y. J., M. Simons, S. B. Yu, L. C. Kuo, and H. Y. Chen. A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt: Earth Planet. Sci. Lett., 211, 287-294 , 2003.
Lee, J.C., and J. Angelier, Location of active deformation and geodetic data analyses: An example of the Longitudinal Valley Fault, Taiwan, Bull. Soc. Geol. France, 164, no. 4, p. 533-570, 1993.
Lee, J.C., F.S. Jeng, H.T. Chu, J. Angelier, and J.C. Hu, A rod-type
creepmeter for measurement of displacement in active fault zone, Earth Planets Space, 52, 5, 321-328, 2000.
Lee, J.C., J. Angelier, H.T. Chu, J.C. Hu, F.S. Jeng and R.J. Rau, Active fault creep variations at Chihshang, Taiwan, revealed by creepmeter monitoring, 1998-2001, J. Geophys. Res., 108, B11, 2528, doi:10.10129/2003JB002394, 2003.
Lin, C. H., Repeated foreshock sequences in the thrust faulting environment of eastern Taiwan, Geo. R. Letter., vol. 31, L13601, doi:10. 1029/2004GL019833, 2004.
Mindlin, R. D., Force at a point in the interior of a semi-infinite solid, Physics, 7,195-202, 1936.
Marone, C. J., C. H. Scholtz, and R. Bilham, On the mechanics of earthquake afterslip., J. Geophys. Res., 96, 8441-8452, 1991.
Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seism Soc. Am., 75, 1135-1154, 1985.
Peltzer, G., P. Rosen, F. Rogez, and K. Hudnut, Postseismic rebound in fault step-overs caused by pore fluid flow, Science, 273, 1202-1206, 1996.
Rothacher, M. and L. Mervart(Eds.), Bernese GPS software v.4.0. Astronomical Institute, University of Berne, Switzerland, 418pp., 1996.
Sasstamoinen, I. I., Contribution to the theory of atmospheric refraction, Bulletin Geodesique, 107, p.13-34, 1973.
Savage, J. C., Svarc J. L.., and Yu, S. B., Postseismic relaxation and transient creep, 2005.
Tsai, Y. B., Plate subduction and the Plio-Pleistocene orogeny in Taiwan, Petrol. Geol. Taiwan. No. 15,1-10, 1978.
Tsai, Y. B., Seismotectonics of Taiwan, Mem. Geol. Soc. China, no. 7,pp.353-367, 1986.
Tsai, Y. B., Liaw, Z., Lee, T.Q., Lin M. T, and Yeh, T. H., Seismological evidence of an active plate boundary in the Taiwan area, Mem. Geol. Soc. China, no. 4, 143-154, 1981.
Wells, D. E., N. Back, D. Delikaraoglou, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley, M. Nakiboglu, K. P. Schwarz, J. Tranquilla, and P.Vanicek, Guide to GPS Positioning, Canadian GPS Associates Fredericton, New Brunswick, Canada, 1986.
Wells, D. L., and K. J. Coppersmith, New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement, Bull. Seismol. Soc. Am., 84, 974-1002, 1994.
Willams, P. L., and H. W. Magistrale, Slip along the Superstition Hills fault associated with the November 1987 Superstition Hills, California, earthquake, Bull. Seismol. Soc. Am., 79, 390-410, 1989.
Yu, S.B., and C.C. Liu, Fault creep on the central segment of the Longitudinal Valley fault, Eastern Taiwan, Proc. Geol. Soc. China, 32, no. 3, p. 209-231, 1989.
Yu, S.B., and L.C. Kuo., Present day crustal motion along the Longitudinal
Valley Fault, eastern Taiwan, Tectonophysics, 333, 199-217, 2001.
Yu, S.B., H.Y. Chen, and L.C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59, 1997.
指導教授 蔡義本、余水倍
(Yi-Ben Tsai、Shui-Beih Yu)
審核日期 2005-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明