博碩士論文 92624006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.236.122.9
姓名 廖智彥(Chien-Yen Liao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例
(Quantitative Analysis of Tecto-geomorphic Index and Longitudinal River Profile:A Case Study of Choushui River, Central Taiwan )
相關論文
★ 有機質成熟度之染色技術應用★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義
★ 煤素質組成對熱裂分析之影響★ 大屯火山群地熱氣與溫泉水之地化特性
★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例★ 土石流誘發因子萃取對土石流危險溪流判定之影響
★ 石油系統之有機材料與熱成熟度特性探討★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例
★ 車籠埔斷層深鑽岩心鏡煤素反射率研究★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例
★ 廢棄礦場環境影響綜合評估★ 九份-金瓜石地區火成作用對有機物成熟度之影響
★ 不同成熟度之有機成分探討★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究
★ 鏡煤素反射率抑制問題與熱模擬之探討★ 台灣中部深部沉積岩之生物質量分布
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在集水區範圍內,構造地形及地貌特性能有效反應在河流剖面、集水面積、坡度等因子上。本研究針對濁水溪主流及12條支流縱剖面進行分析,藉由各因子的數化截取工作,進行基岩河流侵蝕模型、四種數學函數(線性、指數、對數、乘冪)擬合、Hack剖面、河流河段坡降指數(k’)以及標準化坡降指數(SL/k)等地形指標量化分析。本研究結果認為濁水溪流域經過百萬年時距的構造地形演育,影響的主要因子是構造抬升作用,而其分析結果異於Davis所謂河流均夷剖面的理論,其原因與台灣位處在歐亞板塊與菲律賓海板塊碰撞交界處的造山運動帶有關。從凹曲度(θ)所建置的經驗平均值(mean θ=0.47)與河流的擬合分析來看,濁水溪目前在侵蝕與抬升上,已屬均衡穩定狀態。河流坡降指數分析發現A區(上游段)河流與眉溪斷層相遇時,河流坡降指數皆明顯升高,眉溪斷層與EO(Eocene-Oligocene石英砂岩、硬頁岩, 眉溪砂岩等)緊鄰,局部分析雖無法精確了解岩性對坡降指數的影響,但就大範圍的標準化坡降指數而言,斷層對河流剖面的變化影響較為明顯。
摘要(英) River profile can reflect various geomorphic and landform characters of its drainage basin. This study is focused on the profile of the mainstream and 12 tributaries of the Choushui River. Four mathematical models(linear, exponential, logarithmic and power), Hack profile, S-L index(k’) and gradient index (SL/K) were examined for concavity studies of each profile. A quantitative landform analysis can thus be derived.
The results of this study illustrate that, after millions of years of tectonic evolution, the main factor to cause the landform of the drainage basin is tectonic uplifting, instead of what proposed by Davis’s graded river theory. This can be related to the location of Taiwan, which is right on the collision zone and orogenic belt of Eurasian Plate and Philippine Sea Plate.
According to its concavity index (mean θ=0.47), the Choushui River is close to a steady-state of erosion and uplifting at present. Furthermore, gradient index increases as each river meeting with Meishi Fault in district A( upper stream area). Although Meishi Fault is also outcropped with Eocene-Oligocene quartz sandstone and hard shale, the influence of lithology on gradient index is still under discussion. Therefore, in a large-scaled view of gradient index, tectonic fault exhibits a strong influence on river profile in the study area.
關鍵字(中) ★ 河流坡降指數
★ 凹曲度
★ Hack剖面
關鍵字(英) ★ gradient index
★ Hack profile
★ concavity index
論文目次 論文提要………………………………………………………………I
英文摘要……………………………………………………………… II
目錄……………………………………………………………………IV
圖目…………………………………………………………………VI
表目…………………………………………………………………VIII
符號參照表…………………………………………………………IX
第一章 緒論……………………………………………………………1
1-1研究動機…………………………………………………1
1-2 研究目的與步驟…………………………………………6
第二章 研究區域………………………………………………………7
2-1研究區域概述……………………………………………7
2-2 地形與地質分區………………………………………11
第三章 研究方法……………………………………………………14
3-1河流縱剖面與擬合型態…………………………………14
3-2 基岩河流侵蝕模型……………………………………17
3-3 河流坡降指數 ………………………………………19
3-4 資料蒐集與研究流程…………………………………24
第四章 結果與討論………………………………………………30
4-1基岩模型建立與分析…………………………………30
4-2 河流剖面擬合函數………………………………………………36
4-3 河流坡降指數與Hack 剖面分析……………………45
第五章 結論……………………………………………………………54
參考文獻………………………………………………………………56
參考文獻 英文部份
Bonilla, M.G. (1975) Surface faulting and related effects, In Earthquake Engineerng, Weigel, R.L. (eds), New Jersey, Prentic-Hill., p.47-74.
Brandon, M.T., Roden-Tice, M.K., and Garver, J.I. (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, NW Washington State, Geological Society of America Bulltin, v.110,p.985-1009.
Burbank, D.W.and Anderson, R.S. (2001) Tectonic geomorphology. Malden, Mass. : Blackwell Science, p.274.
Chen, Y.C., Sung,Q., and Cheng, K.Y. (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, v.56, p.109–137.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M. L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lin, D.L. and Lin, J.C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, v.426, p.648-651.
Edward A.K. and Nicholas P. (2002) Active tectonics : earthquakes, uplift, and landscape. Upper Saddle River, N.J. : Prentice Hall, p.362.
Hack, J.T. (1957) Studies of longitudinal stream profile in Virginia and Maryland. U.S. Geol. Survey Prof. Paper v.294-B, p.45-95.
Hack, J.T. (1973) Stream-profile analysis and stream-gradient index. U.S. Geol. Surv, J. Res., v.1, p.421-429.
Ho, C.S. (1986) A synthesis of the geologic evolution of Taiwan. Tectonophysics , v.125, p.1-16.
Ho, C.S. (1988) An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan: Ministry of Economic affairs, Taipei, Taiwan, p.192.
Hovius, N., Stark, C.P., and Allen, P.A. (1997) Sediment flux from a mountain belt derived by landslidemapping, Geology, v.25, p.231-234.
Hu, J.C., Yu, S.B., Angelier, J., and Chu, H.T. (2001) Active deformation of Taiwan from GPS measurements and numerical simulations. J. Geophys. Res., v.106, p.2265–2280.
Keller, E.A. and Pinter, N. (1996) Active Tectionic: earthquake, uplift, and landscape. Prentice Hall, New Jersey.
Kooi, H. and Beaumont, C. (1996) Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model, Journal of Geophysical Research, v.102, p.3361-3386.
Li, Y.H. (1975) Denudation of Taiwan Island since the Pliocene Epoch. Geology, v.4, p.105–107.
Lin, J.C. (1999) Morphotectonic evoluition of Taiwan, Geomorphology and Global Tectonics, p.135-146.
Liu, T. K. (1982) Tectonic implications of fission-track ages from the Central Range, Taiwan. Proc. Geol. Soc. China, v.25, p.22–37.
Mackin, J. H. (1948) Concept of the graded stream. Geol. Soc. Am. Bull., v.59, p.463–512.
Merritts, D. and Vincent, K.R. (1989) Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino Triple Junction region, Northern California, Geol. Soc. Am. Bull., v.110, p.1373-1388.
Ohmori, H. (1991) Change in the mathematical function type describing the longitudinal profile of a river through an evolutionary process. Journal of Geology, v.99, p.97–110.
Peng, T.H., Li, Y.H., and Wu, F.T. (1977) Tectonic uplift rates of the Taiwan island since the early Holocene. Mem. Geol. Soc. China, v.2, p.57–69.
Rãdoane, M., Rãdoane, N., and Dumitriu, D. (2003) Geomorphological evolution of longitudinal river profiles in the Carpathians. Geomorphology, v.50, p.293-306.
Seeber, L. and Gornitz, V. (1983) River profile along the Himalayan arc as indictors of active tectonics. Tectonophysics, v.92, p.335–367.
Seidl, M. A. and Dietrich, W. E. (1992) The problem of channel erosion into
bedrock, in Functional Geomorphology, edited by K.-H. Schmidt and
J. de Ploey, Catena Suppl., v23, p.101– 124.
Seno, T. (1977) The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophys, v.42, p.209-206.
Shepherd, R.G. (1985) Regression Analysis of River Profile. Journal of Geology, v.93, p.377–384.
Snow, R.S., and R.L. Slingerland, (1987) Mathematical modeling of graded river profile. Journal of Geology, v.95, p.15-33.
Snyder, N., Whipple, K.X., Tucker, G.E., and Merritts, D. (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino Triple Junction region, Northern California, Geological Society of American Bulletin, v.112, p.1250-1263.
Snyder, N.P., Whipple, K.X., Tucker, G.E., and Merritts, D.J. (2003) Importanceof a stochastic distribution of floods and erosion thresholds in the bedrockriver incision problem, J. Geophys. Res., 108(B2), 2117, doi:10.1029/2001JB001655.
Sung, Q.C., Chen, Y.C., Tasi, H., Chen, Y.G., and Chen, W.S. (2000) Comparison Study on the Coseismic Deformation of the 1999 Chi-Chi Earthquake and Long-term Stream Gradient Changes Alongthe Chelungpu Fault in the Central Taiwan. TAO, v.11, no.3, p.735–750.
Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, v.4, p.67–89.
Tarboton, D.G., Bras, R.L., and Rodriguez-lturbe, l. (1991) On the extraction of channel netorks fromdigital elevation data, Hydrlogical processes, v.5, p.81-100.
Teng, L.S. (1987) Stratigraphy records of the late Cenozoic Penglai orogeny of Taiwan, Acta. Geol. Taiwan, v.25 p.205-224.
Teng, L.S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, v.183, p.57-76.
Tinkler, K.J. and Wohl, E.E. (1998) Rivers Over Rock: Fluvial Processes
in Bedrock Channels, Geophys. Monogr. Ser., v.107, AGU, Washington,D.C.
Tucker, G.E. and Whipple, K.X. (2002), Topographic outcomes predicted
by stream erosion models: Sensitivity analysis and intermodel comparison,J. Geophys. Res., v.107(B9), p.2179.
Wheeler, D.A. (1979) The overall shape of longitudinal profiles of stream. In: Pitty, A.F. (eds), Geographical Approaches to Fluvial Processes, GeoAbstracts, Norwich, p.241-260.
Whipple, K.X. and Tucker, G.E. (1999) Dyanmics of the stream-power river incision model: Impicaion for height limits of mountain ranges, ladscaperesponse timescales, and research needs,Journal of Geophysical Research, v.104, p.17661-19674.
Whipple, K.X., Hancock, Gregory, S., and Anderson, R.A. (2000) River incisoion into bedrock: Mechanics and relative efficacy of plucking abrasion, and cavition, Geological Society of America Bulletin, v.112, p.490-503.
Whipple, K.X., and Tucker, G. E. (2002) Implications of sediment-flux dependentriver incision models for landscape evolution, J. Geophys. Res., v.107,p.2039.
Wilson, T.H. (2000) Some distinctions between self-similar and self-affine estimates of fractal dimension with case history, Mathematical Geology, v.32, no.3, p.319-335.
Yu, S.B., Chen, H.Y., and Kuo, L.C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, v.274, p.41-59.
中文部份
何春蓀 (1986) 台灣地質概論,台灣地質圖說明書,經濟部中央地質調查所,共164頁。
林朝棨 (1957)《台灣地形》,台灣省文獻委員會出版,共424頁。
林貴昆 (1999) 利用數值地形模型自動化分析構造地形指標:以中央山脈南段西南翼為例。國立台灣大學地質研究所碩士論文,共109頁。
陳培源 (1999) 台灣地形劃分新議,「20世紀台灣地區地球科學研究之回顧與展望」系列研討會(一):台灣的大地構造,第208-214頁。
黃瑞賢(2002)大肚溪流域河階地形研究。國立中央大學應用地質研究所碩士論文,共112 頁。
廖何松 (2003) 利用地形計測指標研究台灣南部新潮州斷層沿線之活動構造。國立中央大學應用地質研究所碩士論文,共124頁。
陳彥傑 (2004) 台灣山脈的構造地形指標特性—以面積高度積分、地形碎形參與河流坡降指標為依據。國立成功大學用地球科學研究所博士論文,共129頁。
劉桓吉 (1992) 台灣雪山山脈濁水溪地質之地質。經濟部中央地質調查所彙刊第八號,第31~61頁。
指導教授 蔡龍珆(Long-Yi Tsai) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明