博碩士論文 92624016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.139.81.58
姓名 吳若慧(Jo-hui Wu)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 兩廣雲開高州-雲爐地區麻粒岩相變質作用演化研究
(P-T Evolution of Granulite Facies Rocks Of Gaozhou-Yunlu Area, Yunkai Mountain, Guangxi-Guangdong)
相關論文
★ 花蓮地區單一岩種之鹼-骨材反應研究★ 台灣西部河川砂石及北部地區安山岩之鹼-骨材反應潛能研究
★ 苗栗汶水地區第三紀沈積岩層面之 黑色發亮物質研究★ 花蓮瑞穗地區斑點片岩鈉長石變質斑晶之成因與變質溫度壓力演化
★ 地震斷層作用後的流體滲透作用: 檢視車籠埔斷層南投井斷層岩之化學及礦物組成★ 花崗岩浸泡熱水後的化學與礦物學轉換及其對裂隙發展之影響
★ 台灣海岸山脈秀姑巒溪奇美斷層帶之構造分析★ 地震斷層作用後的流體滲透作用:檢視TCDPA井車籠埔斷層斷層岩的化學及礦物組成
★ 花崗岩浸泡熱水之後,滲透率、孔隙率與裂隙發展的關聯性★ TCDP鑽井岩心之熱參數直接量測與相關物理特性研究
★ 台灣車籠埔斷層注水實驗期間的氣體與水化學分析★ 含藍閃石之角閃岩與變質基性岩之關係以及其礦物化學研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雲開地區地處華夏以及楊子兩大板塊的結合地帶且為華南加里東褶皺帶南段重要組成部分,其中高州—雲爐一帶所出露的麻粒岩相岩石以及紫蘇花崗岩類的演化研究則是探討中下部地殼以及造山帶深部演化中最關鍵的部份。
本研究採集了麻粒岩以及紫蘇花崗岩類、矽卡岩類等標本從事光學顯微鏡岩象觀察以及電子微探儀成分分析工作,並使用地質溫壓計計算以及熱力學模擬的方式推測各岩類中所記錄到之溫度壓力演化途徑。於石榴—菫青麻粒岩中分析不同時期之礦物組合得到早期—峰期等壓增溫,峰期—後期減壓降溫的順時針溫度壓力演化歷史。而在紫蘇閃長岩及紫蘇花崗閃長岩中則都記錄了減壓降溫的抬升歷史。另外在矽卡岩類當中由岩象觀察以及斜輝石與角閃石之定性化學分析之化學成分發現後期受到糜嶺岩化以及角閃岩相以下之降級變質作用。
綜合岩象觀察、礦物化學分析以及地質溫壓計與熱力學模擬結果,筆者認為雲開地區之麻粒岩相岩石在紫蘇花崗閃長岩岩岩漿入侵前可能為高壓角閃岩相或高壓麻粒岩相之變質泥岩,在紫蘇花崗岩岩漿入侵加熱後經由等壓增溫途徑進入中壓麻粒岩相以及低壓麻粒岩相,隨後與紫蘇花崗岩類以及矽卡岩類同時抬升進入角閃岩相以及綠色片岩相後繼續抬升至地表。
結合前人定年結果所做出之構造演化模型,麻粒岩相變質作用是受到加里東期造山過程中紫蘇花崗岩類岩漿入侵而發生,而糜嶺岩化作用以及角閃岩相以下之變質作用過程則是受到印支期陸—陸碰撞(大陸造山帶)影響。
摘要(英) Yunkai orogenic belt lies between Xianggui block and Cathaysia block as an important part of south segment of Caledonia fold belt in South China. The granulite facies rocks (Granulites) and Charnockites in Gaozhou-Yunlu are also a key to understand middle to lower crust and to investigate the tectonic evolution of South China.
In this Study, we take samples of Granulites, Charnockites and Skarns for mineral phase observation with microscrope and for mineral chemical composition analyses with electro-microprobe. We also use geothermobarometer calculation and thermodynamic modeling to find out the P-T evolution evidence preserved in all kinds of rocks. In different stage of mineral assemblage of Garnet-Cordierite granulite we get a clockwise P-T path which isobaric heating from the early stage to peak stage followed by decompression cooling to late stage. In Enderbite and Charno-enderbite, we both get a decompression cooling history. And in Skarns, though the observation of mineral phase and qualitative analyses with Clinopyroxene and Amphibole, we find the records of mylonitaztion and retrograde metamorphism of Amphibolite to Greenshist facies.
With all the analyses and calculations,we think that the protolith of Granulites in Yunkai area were metapelites in Amphibolite facies or High-pressure granulite facies. After intrusion of Charno-enderbite magma, it went into Medium-pressure to Low-pressure granulite facies by heating. In the latter stage, Granulites uplift with Charnockites and Skarns and went though Amphibolite and Greenchist facies to the ground surface.
Combine with perversely isochorne age data, we make a tectonic evolution model that the granulite facies metamorphism was caused by Charnockite magma intrusion in Caledonia movement, the mylonitization and Amphibolite to Greenshist facies retrograde metamorphism was affect by Indo-China movement.
關鍵字(中) ★ 雲開
★ 麻粒岩
★ 紫蘇花崗岩
★ 矽卡岩
關鍵字(英) ★ Yun-Kai
★ Granulite
★ Charnockite
★ Skarn
論文目次 目 錄
頁次
論文提要 …………………………………………………………………………i
誌謝 …………………………………………………………………………………ii
目錄 …………………………………………………………………………………iii
圖目錄 ………………………………………………………………………………v
表目錄 ………………………………………………………………………………vii
圖版目錄 …………………………………………………………………………viii
一、 緒論…………………………………………………………………………1
1.1 地質背景與前人研究…………………………………………………1
1.2 造山帶麻粒岩與紫蘇花崗岩…………………………………………8
1.2.1 麻粒岩形成條件…………………………………………………8
1.2.2 紫蘇花崗岩定義…………………………………………………9
1.3 研究動機與目的………………………………………………………9
二、 研究方法……………………………………………………………………12
2.1 野外調查與研樣採集…………………………………………………12
2.2 室內分析工作…………………………………………………………12
2.2.1 岩象觀察…………………………………………………………12
2.2.2 電子微探儀分析…………………………………………………12
2.2.3 礦物化學式計算…………………………………………………17
2.2.4 地質溫壓計計算…………………………………………………17
2.2.5 熱力學模擬………………………………………………………19
三、 野外調查與岩象觀察………………………………………………………23
3.1 野外調查………………………………………………………………23
3.2 岩象觀察………………………………………………………………24
3.2.1 紫蘇花崗岩………………………………………………………24
3.2.2 麻粒岩……………………………………………………………25
3.2.3 矽卡岩……………………………………………………………27
四、 礦物化學分析………………………………………………………………31
4.1 石榴子石………………………………………………………………31
4.2 黑雲母…………………………………………………………………41
4.3 紫蘇輝石………………………………………………………………48
4.4 堇青石…………………………………………………………………49
4.5 長石……………………………………………………………………52
4.6 斜輝石…………………………………………………………………52
4.7 角閃石…………………………………………………………………56
4.8 尖晶石…………………………………………………………………59
五、 地質溫壓計與熱力學模擬…………………………………………………63
5.1 地質溫壓計之選擇……………………………………………………63
5.1.1 礦物配對選擇……………………………………………………63
5.1.2 不同溫壓計的使用………………………………………………65
5.1.3 溫度壓計結果討論………………………………………………70
5.2 THERMOCALC熱力學模擬結果……………………………………74
六、 討論與結論…………………………………………………………………76
6.1 溫度壓力途徑演化(P-T path) ………………………………………76
6.2 麻粒岩相岩石之變質壓力討論………………………………………79
6.3 麻粒岩相地體演化…………………………………………………………81
6.4 結論……………………………………………………………………85
參考文獻 ………………………………………………………………………………87
英文摘要 ………………………………………………………………………………96
圖版 ………………………………………………………………………………97
附錄A 石榴子石成分表………………………………………………………116
附錄B 黑雲母成分表………………………………………………………122
附錄C 紫蘇輝石成分表……………………………………………………125
附錄D 堇青石成分表………………………………………………………126
附錄E 角閃石成分表………………………………………………………128
附錄F 斜輝石成分表………………………………………………………132
附錄G 尖晶石成分表………………………………………………………135
附錄H 鈦鐵礦成分表………………………………………………………136
附錄I 熱力學模擬計算過程………………………………………………137
參考文獻 丁鵬飛 2001: 欽州—錢塘結合帶及其控礦作用。重點成礦區帶的區域構造和成礦構造文集。北京,地質出版社,75-102頁。
王江海、涂湘林、孫大中 1999: 粵西雲開地塊內高州地區深熔混合岩的鋯石U-Pb年齡。地球化學,第28卷第3期,231-238頁。
周漢文、李獻華、劉穎 1998: 粵西龍修地區大理岩的Pb-Pb年齡及其地質意義。現代地質,第12期第2卷,180-184頁。
周漢文、游振東、鍾增球、韓郁菁 1994a: 雲開隆起低壓麻粒岩相變質作用時代的重要發現。地質科技情報,第13卷第3期,23-26頁。
周漢文、游振東、鍾增球、韓郁菁 1994b: 雲開隆起區鉀長球斑片麻狀黑雲母花崗岩鋯石特徵研究。地球科學—中國地質大學學報,第10期第4卷,427-432頁。
周漢文、游振東、鍾增球、韓郁菁 1996: 粵西雲開前寒武紀基底麻粒岩、紫蘇花崗岩放射性元素分布特徵與岩石成因討論。地球科學-中國地質大學學報,第21卷第5期,529-535頁。
周漢文 1995: 雲開隆起基底岩系岩石學地球化學研究。【博士論文】武漢—中國地質大學 。
陳斌、庄育勛 1994a: 粵西雲爐紫蘇花崗岩及其麻粒岩包體的主要特徵和成因討論。岩石學報,第10卷第2期,139-150頁。
陳斌、黃福生 1994b: 粵西雲爐地區混合岩的成因研究。地質學報,第68卷第3期,231-241頁。
陳斌 1992: 雲開地區高州—雲爐加里東變質帶的研究。南京大學學報(地球科學版),第4卷第1期,59-67頁。
黃汲清 1960: 中國地質構造基本特徵的初步總結。地質學報,第40卷第1期,1-37頁。
黃汲清、任紀舜、姜春發 1977: 中國大地構造的基本輪廓。地質學報,第51卷第2期,117-135頁
游振東、鍾增球、韓郁菁 1994: 雲開隆起區基底岩系地質特徵構造演化及含礦性。(科研報告)武漢—中國地質大學。
萬天豐 1993: 中國東部中、新生代板內變形構造應力場及其應用。北京,地質出版社。
彭松柏、金振民、付建民 2004: 紫蘇花崗岩成因及構造意義。華南地質與礦產。第四期,63-70頁。
彭松柏 2006: 雲開造山帶深熔花崗岩、麻粒岩相變質與構造演化研究。【博士論文】武漢—中國地質大學 。
鍾增球、游振東、周漢文、韓郁菁 1996: 兩廣雲開地區基底的組成演化及其基本結構格局。中國區域地質。第1期,36-42頁。
Abrecht, J., and Hewitt, D. A., 1988. Experimental evidence on the substitution of Ti in biotite, American Mineralogist, 73, 1275-1284.
Berman, R. G., 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2, Journal of Petrology, 29, 445-522.
Berman, R. G., 1990. Mixing properties of Ca-Mg-Fe-Mn garnets, American Mineralogist, 75, 328-344.
Bohlen, S. R., 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites, Journal of Geology, 95, 617-632.
Bohlen, S. R., 1991. On the formation of granulites, Journal of Metamorphic Geology, 9, 223-229.
Bohlen, S. R., and Liotta, J. J., 1986. Barometer for garnet amphibolites and garnet granulites, Journal of Petrology, 27, 1025-1034.
Bohlen, S. R., Wall, V. J., and Boettcher, A. L., 1983. Geobarometry in granulites, Kinetics and equilibrium in mineral reactions, 141-147.
Brown, E. H., 1977. The crossite content of Ca-amphibole as a guide to pressure of metamorphism, Journal of Petrology, 18, 53-72.
Brown, M., 2002. Retrograde processes in migmatites and granulite revisited, Journal of Metamorphic Geology, 20, 25-40
Chen, W. M., and Roden, M. F., 1994. Biotite reequilibration in Blue ridge, southern Appalachians around Shooting creek area (NC) and its implications for the thermobarometric calculation, Journal of the Geological Society of China, 37, No 1, 39-52.
Dempster, T. J., 1985. Garnet zoning and metamorphism of the Barrovian type area, Scotland, Contributions to Mineralogy and Petrology, 89, 30-38.
Droop, G. T. R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineralogical Magazine, 51, 431-435.
Eckert, J. O., Newton, R. C., and Kleppa, O. J., 1991, The H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry, American Mineralogist, 76, 148-160.
Ellis, D. J., 1980, Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust, Contributions to Mineralogy and Petrology, 74, 201-210.
Ellis, D. J., 1987. Origin and evolution of granulites in normal and thickened crusts, Geology, 15, 167-170.
Ellis, D. J., Green, D. H., 1979, An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria, Contributions to Mineralogy and Petrology, 71, 13-22.
Essene, E. J., 1989. The current status of thermobarometry in metamorphic rocks, Geological Society Special Publication, 43, 1-44.
Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., and Zussman, J., 1988. Nomenclature of pyroxene, American Mineralogist, 73, 1123-1133
Ferry, J. M., and Spear, F. S., 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet, Contributions to Mineralogy and Petrology, 66, 113-117.
Frost, B. R., and Frost, C. D., 1987. CO2, melts and granulite metamorphism, Nature, 327, 503-506.
Fyfe, W. S., 1973. The granulite Facies, partical melting and the Archaean crust, Philosophical Transaction of the Royal Society of London, Series A, Mathematical and Physical Science, A273, 1235, 457-461.
Ganguly, J., and Saxena, S. K., 1984. Mixing properties of aluminosillicate garnet: constraints from natural and experimental data, and applications to geothermobarometry, American Mineralogist, 69, 88-97.
Gessmann, C. K., Spiering, B., and Raith, M., 1997. Experimental study of the Fe-Mg exchange between garnet and biotite; constraints on the mixing behavior and analysis of the cation-exchange mechanisms, American Mineralogist, 82, 1225-1240.
Gottschalk, M., 1997. Internally consistent thermodynamic data for rock forming minerals, European Journal of mineralogy, 9, 175-223.
Grant, J. A., 1985. Phase equilibria in partial melting of pelitic rocks. in: Migmatites, Ashworth J.R., (Ed.) Glasgow, Blackie, 86-144.
Green, D. H., and Ringwood, A. E., 1972. A comparison of recent experimental data on the gabbro-garnet granulite-eclogite transition, Journal of Geology, 80, 277-288.
Guidotti, C. V., 1984. Micas in metamorphic rocks, Reviews in Mineralogy, 13, 357-467.
Guidotti, C. V., Cheney, J. T., and Henry, D. J., 1988. Compositional variation of biotite as a function of metamorphic reactions and mineral assemblage in the pelitic schists of western Maine, American Journal of Science, 288-A, 270-292.
Harley, S. L., 1984. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene, Contributions to Mineralogy and Petrology, 86, 359-373.
Harley, S. L., 1989. The origins of granulite, a metamorphic perspective, Geological Magazine, 126, 215-247.
Harley, S. L., and Green, D. H., 1982, Garnet-orthopyroxene barometry for granulites and peridotites, Nature (London), 300, 697-701.
Hansen, E. C., Newton, R. C., and Janardhan, A. S., 1984. Pressures, temperatures and metamorphic fluids across an unbroken amphibolite facies to granulite facies transition in southern Karnataka, India. In Kr?ner, A. et al., (Ed.) Archaean Geochemistry, Springer-Verlag, 161-181.
Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird D. K., 1978, Summary and critique of the thermodynamic properties of rock-forming minerals, American Journal of Science, 278A, 229.
Hodges, K. V. and Spear, F. S., 1982, Geothermometry, geobarometry and the Al (sub 2) SiO (sub 5) triple point at Mt. Moosilauke, New Hampshire, American Mineralogist, 67, 1118-1134.
Hoisch, T. D., 1990, Empirical calibration of six geobarometers for the mineral assemblage quartz+muscovite+biotite+plagioclase+garnet, Contributions to Mineralogy and Petrology, 104, 225-234.
Holdaway, M. J. 1997, Application of new experimental and garnet Margules data to the garnet-biotite geothermometer, American Mineralogist, 85 7-8 881-892.
Holland, T. H., 1900, The charnockite series, a group of Archaean hypersthenic rocks in Peninsular India, Memoirs Geological, Survey of India, 2, 192-249.
Holland, T. J. B., and Powell, R., 1985, An internally consistent thermodynamic dataset with uncertainties and correlations: 2: Data and results, Journal of Metamorphic Geology, 3, 343-370.
Holland, T. J. B., and Powell, R., 1990, An internally consistent thermodynamic dataset with uncertainties and ,correlations: the system Na2O-K2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-SiO2-TiO2-C-H2-O2, Journal of Metamorphic Geology, 8, 89-124.
Holland, T. J. B., and Powell, R., 1998, An internally consistent thermodynamic data set for phases or petrological interest, Journal of Metamorphic Geology, 16, 309-343.
Indares, A., and Martignole, J., 1985. Biotite-garnet geothermometry in the granulite facies; the influence of Ti and Al in biotite, American Mineralogist, 70, 272-278.
Johnson, T., Brown, M., Gibson, R., and Wing, B., 2004. Spinel-cordierite symplectite replacing andalusite: evidence for melt-assisted diapirism in the Bushneld Complex, South Africa, Journal of Metamorphic Geology, 22, 529-545.
Kleemann, U., and Reinhardt, J., 1994. Garnet-biotite thermometry revisited; the effect of Al (super VI) and Ti in biotite, European Journal of Mineralogy, 6, 925-041.
Kretz, F. S. 1983. Symbols for rock-forming minerals, American Mineralogist, 68, 277-279.
Laird, J., and Albee, A. L., 1981(a), High-Pressure metamorphism in mafic schist from northern Vermont, American Journal of Science, 281, 97-126.
Laird, J., and Albee, A. L., 1981(b), Pressure, temperature and time indicators in mafic schist: Their application to reconstructing the polymetamorphic history of Vermont, American Journal of Science, 281, 127-175.
Lamb, W. M., Valley, J. W., 1984, Metamorphism of reduced granulites in low-CO2 vapor-free environment, Nature, 321, 56-58.
Lamb, W. M., Valley, J. W., 1985, C-O-H fluid calculations and granulite genesis. in: The Deep Proterozoic Crust in the North Atlantic Provinces, Tobi A.C., Touret J.L.R., (Eds.) Dordrecht, D. Reidel, 119-131.
Leake, B. E., 1965. The relationship between tetrahedral aluminum and the maximum possible octahedral aluminum in natural calciferous and sub-calciferous amphiboles, American Mineralogist, 50, 843-851.
Leake, B. E., 1978. Nomenclature of amphobles, Mineralogical Magazine, 42, 533-563.
Leake, B. E., 1978. Nomenclature of amphiboles, American Mineralogist, 63, 1023-1052.
Leake, B. E., Woolley, A. R., Arps, C. E. S., Brich, W. D., Gilbert, M. C., Grice, J. D., Hawththoren, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., and Youzhi, G., 1997. Nomenclature of amphobles: Report of the Subcommittee on Amphobles of the International Mineralogical Association, Commission on New Minerals and Mineral names, Mineralogical Magazine, 61, 295-231.
Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N., and Whittaker, E. J. W., 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature, Mineralogical Magazine, 68, 209-215.
Lee, H. Y., and Ganguly, J., 1988. Equilibrium compositions of co-existing garnet and orthopyroxene; experimental determinations in the system FeO-MgO-Al (sub 2) O (sub 3) -SiO (sub 2) , and applications, Journal of Petrology, 29, 93-113.
Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Grossary of Terms. (Ed) Blackwell Oxford. 193pp.
Moecher, D. P., Essene, E. J., and Anovitz. L. M., 1988. Calculation and application of clinopyroxene-garnet-plagioclase-quartz geobarometers, Contributions to Mineralogy and Petrology, 100, 92-106.
Mogessie, A., Ettinger, K., Leake, B. E., 2004. AMPH-IMA04: a revised Hypercard program to determine the name of an amphibole from chemical analyses according to the 2004 International Mineralogical Association scheme, Mineralogical Magazine, 68, 825-830.
Morimoto, N., 1988. Nomenclature of pyroxenes, Mineralogical Magazine, 367, 535-557.
Newton, R. C., 1989. Metamorphic fluids in the deep crust, Annual review of Earth and Planetary Sciences, 17, 385-412.
Newton, R. C., 1992. An overview of charnockite, Precambrian Research, 55, 399-405.
Newton, R. C., and Perkins, D. III, 1982. Thermodynamic calibration of geobarometers based on the assemblagesgarnet-plagioclase-orthopyroxene (clinopyroxene)-quartz, American Mineralogist, 67, 203-222.
Newton, R. C., Smith, J. V., and Windley, B. F., 1980. Carbonic metamorphism, granulites and crustal growth, Nature, 288, 45-50.
Nichols, G. T., Berry, R. F. and Green, D. H., 1992. Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and applications, Contributions to Mineralogy and Petrology, 111, 362-377.
Nichols, G. T., and Wiebe, R. A., 1998. Desilication veins in the Cadillac Mountain granite (Maine, USA): a record of reversal in the SiO2 solubility of H2O-rich vapour released during subsolidus cooling, Journal of Metamorphic Geology, 16, 795-808.
Patino, D. A. E., 1993. Titanium substitution in biotite; thermodynamic properties and applications to thermometry and oxygen and water barometries, Terra Abstracts, 5. 8-9.
Pattison, D. R. M., and Newton, R. C., 1989. Reversed experimental calibration of the garnet-clinopyroxene Fe-Mg exchange thermometer, Contributions to Mineralogy and Petrology, 101, 87-103.
Perchuk, L. L., and Aranovich, L. Y., 1984. Improvement in biotite-granitic geothermometry; correction for amount of fluorine in biotite, Doklady Akademii Nauk SSSR, 277, 471-475.
Perkins, D., and Chipera, S. J., 1985. Garnet-orthopyroxene-plagioclase-quartz barometry; refinement and application to the English River Subprovince and the Minnesota River valley, 89, 69-80.
Pitra, P., and De Waal, S. A., 2001. High-temperature, Low-pressure metamorphism and development of prograde symplectites, Marble Hall Fragment, Bushveld Complex (South Africa), Journal of Metamorphic Geology, 19, 311-325.
Powell, R., 1983. Processes in granulite-facies metamorphism. in: Migmatites, Melting and Metamorphism, Atherton, M.P., Gribble, C.D., (Eds.) Nantwich, Shiva, 127-139.
Powell, R., 1985: Regression diagnostics and robust regression in geothermometer/geobarometer calibration; the garnet-clinopyroxene geothermometer revisited, Journal of Metamorphic Geology, 3, 231-243.
Powell, R., and Holland, T. J. B., 1985. An internally consistent thermodynamic dataset with uncertainties and correlations: 1: Methods and a worked example, Journal of Metamorphic Geology, 3, 327-342.
Powell, R., and Holland, T. J. B., 1988. An internally consistent thermodynamic dataset with uncertainties and correlations: 3: Application methods, worked examples and a computer program, Journal of Metamorphic Geology, 6, 173-204.
Powell, R., and Holland, T. J. B., 1990. Calculated mineral equilibria in the pelitic system, KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O), American Mineralogist, 75,367-380.
Powell, R., Holland, T. J. B. and Worley, B., 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC, Journal of Metamorphic Geology, 16, 577-588.
Raase, P., 1974. Al and Si contents of hornblend, indicators of pressure and temperature of regional metamorphism, Contributions to Mineralogy and Petrology. 45, 231-236.
Robinson, P., 1991. The eye of the petrographer, the mind of the petrologist, American Mineralogist. 76, 1781-1810.
Rock, N. M. S., Carroll G. W., 1990. MINTAB: a general-purpose mineral recalculation and tabulation program for Macintosh microcomputers, American Mineralogist, 75, 424-430.
Sandiford, M. A., Powell, R., 1986. Deep crustal metamorphism during continental extension: modern and ancient examples, Earth and Planetary Science Letters, 79, 151-158.
Sen, S. K. and Bhattacharya, A., 1984. An orthopyroxene-garnet thermometer and its application to the Madras charnockites, Contributions to Mineralogy and Petrology, 88, 64-71
Shelley, D., 1993. Igneous and Metamorphic Rocks under the Microscope: Classification, Textures, Microstructures and Mineral Preferred-Orientations. (Ed.) Chapman&Hall. 91p.
Spear, F. S.,1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. (Ed.) Mineralogical Society of American,799P.
Spear, F. S., Hickmott, D. D., and Selverstone, J., 1990. Metamorphic consequences of thrust empleacement , Fall Mountain, New Hampshire, Geological Society of America Bulletin, 102, 1344-1360.
Spear, F. S., Kohn M. J.,and Cheney J. T., 1999. P-T paths from anatectic pelites, Contributions to Mineralogy and Petrology, 134, 17-32.
Spear, F. S., and Peacock, S. M., 1990. Metamorphic P-T-t path. Program manual and computer exercises for the calculation of metamorphic phase equilibria, pressure-temperature-time path and thermal evolution of orogenic belts. 188p.
Spear, F. S., Seleverstone, J., 1983. Quantitative P-T paths from zoned minerals: theory and tectonic applications, Contributions to Mineralogy and Petrology. 83, 348-357.
St-Onge, M. R., 1987. Zoned poikiloblastic garnets; P-T paths and syn-metamorphic uplift through 30 km of structural depth, Wopmay Orogen, Canada Journal of Petrology, 28, 1-21.
Thompson, A. B., 1982. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids, American Journal of Science, 282, 1567-1595.
Tracy, R. J., 1982. Compositional Zoning and inclusions in metamorphic minerals, Reviews in Mineralogy and Geochemistry, 10, 355-397.
Tracy, R. J. R, and Thompson, P. A. B., 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts, American Mineralogist, 61, 762-775.
Waters, D. J., 1990. Thermal history and tectonic setting of the Namaqualand granulites, southern Africa: clues to Proterozoic crustal development. in: Granulites and Crustal Evolution. NATO-ASI series C-311, Vielzeuf D., Vidal P., (Eds.) Amsterdam, Kluwer, 243-256.
Wells. P. R. A., 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust, Earth and Planetary Science Letters, 46, 253-265.
White, R. W., Powell, R., and Holland, T. J. B., 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH), Journal of Metamorphic Geology, 19, 139-153.
Williams, K. L., Rock, N. M. S. and Carroll, G. W., 1990. SPINEL and SPINELTAB; Macintosh programs to plot spinel analyses in the three-dimensional oxidized (magnetite) and reduced (ulvospinel) prisms, American Mineralogist, 75, 1248-1230.
指導教授 陳維民(Wei-Min Chen) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明