博碩士論文 92625007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.229.122.166
姓名 莊凱勳(Kai-Hsun Chuang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 翡翠水庫及其集水區之氫氧碳同位素 水文學研究
(Hydrogen, Oxygen, and Carbon Isotope Compositions of Meteoric Waters in Feitsui Reservoir and Its Watershed, in Northern Taiwan )
相關論文
★ 翡翠水庫之水文特性及水理水質之模式研究★ 以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物
★ 淡水河重金屬傳輸模式之發展★ 淡水河流域鹼度、酸鹼值與主要離子 之時空變化
★ 水體中顆粒與沈積物之有機碳、氮及其穩定同位素研究:南海及翠峰湖★ 淡水河口水舌擺盪動力機制之研究
★ 翡翠水庫之沉降顆粒及沉積物中 多環芳香族碳氫化合物(PAHs)之研究★ 呂宋海峽內潮及其強化生地化通量之數值研究
★ 南海時間序列測站(SEATS)碳循環之探討:一維物理-生地化耦合模式之應用★ 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究
★ 利用SPOT衛星影像探討蘭陽溪口淡水舌之時空變化★ 潮汐作用對東海生地化循環及初級生產力之影響
★ 淡水河流域溶解性有機碳通量之研究★ 淡水河流域營養鹽濃度及溶氧之變化與一維數值模擬
★ 利用衛星遙測資料探討南海與蘭陽溪河口生地化特性之時空變化★ 河口與近海環境懸浮顆粒物質之探討:顆粒性有機物之來源及懸浮顆粒之重量法測定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 翡翠水庫集水區是大台北地區主要用水來源。水體中氫、氧同位素組成的變化記錄了水的來源與混合,是研究水文學的重要工具之一。因此,本研究探討翡翠水庫之庫水與集水區之雨水、河水間之關係,以提供水庫水資源管理所需的基本同位素水文資訊。本研究自2003年4月至2004年4月以連續方式收集雨水,並按月採集水庫以及周圍集水區三大主要支流的水樣,進行氫、氧、碳同位素值之分析,並配合氣象及水文資料,進一步了解集水區中的水文循環變化。
研究結果發現翡翠水庫雨水中氫氧同位素值與氣溫呈負相關,與一般大陸地區之情況不同。推論台灣北部翡翠水庫集水區內雨水氫氧同位素組成之變化主要受不同來源氣團的影響,氣溫並非主要因素。由於氣團的來源及路徑依季節變化,故其間的水循環之同位素分化過程也相異,本研究主要區分為兩個不同時段探討天水線關係式。5月到9月為西南季風盛行期,δ18O值分佈自-0.7‰至-11.7‰,而δD則由1.1‰至-87.4‰;迴歸的天水線為???。10月到次年3月為東北季風盛行期,δ)7.04.7()1.08.7(18±+±=ODδδ18O值分佈從0.6‰至-6.2‰,而δD則由20.5‰至-38.4‰;迴歸的天水線為:。研究期間內全年的雨水天水線的迴歸式為:。 )4.19.13()5.02.7(18±+±=ODδδ)79.005.13()17.02.8(18±+±=ODδδ
翡翠水庫集水區之河水同位素組成變化趨勢與雨水之變化差異很大。將雨水進行5個月移動平均並依雨量加權後,發現雨水與河水在季節性的變化趨勢上較為吻合,可能受雨水入滲的遲滯效應的影響。河水同位素值的變化幅度小於雨水,且同位素值偏輕,推測可能的影響因素有:(1)夏季受雨量效應影響,同位素值相對較低,入滲量亦可能較大;(2)海拔較高之雨水同位素值相對較輕;(3)過去數年的雨水同位素值可能偏低。
庫水的來源主要由上游支流匯入,而支流的基流係來自雨水入滲後形成的地下水,因此所觀察到的同位素組成的季節性變化幅度很小,δ18O值分佈範圍自-4.7‰至-8.3‰,全年平均為-5.8‰。在本研究中發現水庫進水來源除了低流量之河川基流外,在颱風大雨期間發生的漫地流亦對水庫同位素組成產生重大影響。例如水庫中所量測的最低氧同位素值(-8.3‰),即是2003年9月時的颱風過後,漫地流進入水庫的高濁度中層水。
研究期間水庫表水無機碳同位素值分佈在-11.7‰到-16.0 ‰之間,以6月最重而3月較輕。主要原因係6月藻類大量繁殖,行光合作用優先利用較輕的碳同位素,因此剩下的水體碳同位素組成就相對趨重。7月以後葉綠素含量開始減少,由呼吸作用產生的二氧化碳持續增加,加之有機碳同位素值偏輕,因此水庫中碳同位素值也就相對較輕。
本研究結果顯示,氫氧碳同位素組成是水文研究的良好示蹤劑,可有效解釋翡翠水庫的庫水、河水和雨水之來源與混合,並可深入了解集水區之水文循環及與生地化作用的關係,同時亦對翡翠水庫的水量及水質管理提供了有價值的資訊。
摘要(英) Feitsui Reservoir provides water supply in Taipei City as well as parts of Taipei County in northern Taiwan. The variations of hydrogen, oxygen, and carbon isotope compositions of waters record the sources and mixtures of waters; they are ideal and important tools to study hydrology. This study discussed the relationships among the waters in Feitsui Reservoir, rain waters and river in its watershed in order to provide basic isotope information in hydrology for the appropriate water resource management. From April 2003 to April 2004, rain waters of respective rainy days were collected at Feitsui Reservoir; waters of the reservoir and major branches of its watershed were also sampled monthly. These water samples were analyzed for hydrogen, oxygen, and carbon isotope compositions. In addition, information of meteorology and hydrology was also compiled and integrated with isotope data to study the hydrology cycle of Feitsui Reservoir.
Analytical results showed that the hydrogen and oxygen isotope compositions of rain waters in Feitsui Reservoir exhibit a negative correlation with air temperature; an opposite feature with those observed in the continent. Apparently, the variations of hydrogen and oxygen isotope compositions of the rain waters in Feitsui Reservoir’s watershed have been primarily affected by the air masses of different seasons rather than the air temperature; because the sources and the paths of air masses change with seasons and cause distinct isotope fractionations accordingly. Two intervals (southwest and northeast monsoons) were differentiated to discuss the meteoric water lines in this study. Southwest monsoon prevails from May to September, and the ranges of δ18O and δD were -0.7‰ ~ -11.7‰ and1.1‰ ~ -87.4‰, respectively; the least-squares regression line was: ? ?Northeast monsoon prevails from October to March, and the ranges of δ)7.04.7()1.08.7(18±+±=ODδδ18O and δD were 0.6‰ ~ -6.2‰ and 20.5‰ ~ -38.4‰, respectively; the least-squares regression line was: .Over this study period, the least-squares regression line of all precipitation data was: . )4.19.13()5.02.7(18±+±=ODδδ)8.01.13()2.02.8(18±+±=ODδδ
The hydrogen and oxygen isotope compositions of the river waters in Feitsui Reservoir’s watershed showed significant and systematic discrepancy with those of rain waters. The isotope data of rain samples were processed as five-month moving average and weighted according to the precipitation amount. The resulting trends of processed rain waters showed similar seasonal pattern with those of river waters probably due to the hysteresis effect of rain infiltration. The isotopic ranges of the river waters were relatively smaller and depleted than those of the precipitation. The possible causes are: (1) Rain waters had a larger precipitation amount effect in summer with relatively depleted isotope signatures and higher amount of infiltration;(2) The isotope compositions of the rain waters have an altitude effect that provides relatively depleted isotope values at higher locations; (3) The isotope compositions of the rain waters for previous years might carry relatively depleted isotope values.
The main source of the Reservoir derives from upstream branch waters, and base flows of those branches are groundwaters after rain infiltration. The observed seasonal isotope fluctuations of base flows were small, δ18O ranging from -4.7‰ to -8.3‰ with a mean value of -5.8‰. On the other hand, the overland flow displayed a large impact on the isotope compositions of the Reservoir during the typhoon periods. For example, the lowest δ18O (-8.3‰) value was detected in the middle water layer of the Feitsui Reservoir after the typhoon of September 2003.
The dissolved δ13C values of water samples ranged from -11.7‰ to -16.0 ‰, with relative enriched compositions in June and depleted values in March. The main cause of this season discrepancy is due to the higher growth of algae in June, which absorbed the lighter carbon, leaving the water carbon isotope relatively enriched. The chlorophyll reduced significantly after July with carbon dioxide continually introduced from respiration, resulting lighterδ13C values in the reservoir.
In short, results of this work demonstrated that hydrogen, oxygen, and carbon isotope compositions are good tracers in studying hydrology. These isotope tracers not only can effectively explain the sources and mixtures from various sources in Feitsui Reservoir but also enhance our understanding of the hydrology cycle in its watershed and the close relationship between the biology and geochemistry. The isotope data collected in this study are also valuable in the management of the Feitsui Reservoir waters in terms of quality and quantity.
關鍵字(中) ★ 翡翠水庫
★ 天水
★ 氧同位素
★ 氫同位素
★ 碳同位素
★ 水文學
★ 水循環
★ 地球化學
關鍵字(英) ★ carbon isotopic
★ hydrogen isotopic
★ oxygen isotopic
★ meteoric water
★ Feitsui Reservoir
★ hydrology cycle
★ geochemistry
★ hydrology
論文目次 中文摘要 i
英文摘要 iii
致謝 vii
目錄 viii
表目錄 x
圖目錄 xi
附錄目錄 xiv
1. 緒論 1
1.1. 同位素水文學 1
1.1.1氫氧碳同位素 1
1.1.2水文循環與氫氧同位素分化之效應 2
1.1.3穩定碳同位素 6
1.2. 台灣地區氫氧同位素天水線以往之研究 7
1.3. 台灣北部地區碳同位素以往之研究 9
1.4. 翡翠水庫集水區背景介紹 9
1.4.1北勢溪 10
1.4.2逮魚堀溪 11
1.4.3金瓜寮溪 11
1.5. 研究動機及目的 11
2. 材料與方法 13
2.1. 研究材料 13
2.1.1器材與試劑 13
2.1.2藥劑 13
2.1.3標本採集 13
2.2. 水標本之分析方法 15
2.2.1穩定氧同位素分析 16
2.2.2穩定氫同位素分析 17
2.2.3穩定碳同位素分析 18
3. 台灣北部翡翠水庫集水區之穩定同位素組成 20
3.1. 氣象與水文參數 20
3.1.1雨量 20
3.1.2氣溫 21
3.1.3風向 22
3.1.4葉綠素 22
3.1.5水溫資料 22
3.2. 翡翠水庫集水區之穩定氫氧同位素組成 23
3.2.1雨水樣本氫氧同位素組成之時序變化 23
3.2.2翡翠水庫上游支流及下游南勢溪氧同位素組成 25
3.2.3庫區內之氧同位素組成 27
3.3. 水庫集水區之穩定碳同位素組成 30
3.3.1翡翠水庫集水區支流穩定碳同位素組成 30
3.3.2翡翠水庫庫區內碳同位素組成 31
4. 討論 34
4.1. 控制雨水氫氧同位素組成之因素 34
4.1.1雨水之變化特性 34
4.1.2溫度影響 35
4.1.3雨量影響 36
4.1.4風向影響 38
4.1.5氣團來源影響 38
4.2. 河水中氫氧同位素組成與雨水之關係 41
4.3. 水庫內氫氧同位素組成與入流水之關係 44
4.4. 影響集水區碳同位素組成之因素 46
5. 結論 48
中文參考文獻 51
英文參考文獻 53
附錄 88
參考文獻 中文參考文獻
王淑姿 (2003),南投烏溪流域河水之氫氧同位素研究,國立中興大學土壤環境科學所碩士論文。
王實鼎、鄭俠、趙友夔 (1984),台灣天氣變化之自然季節。大氣科學,101-120。
宋睿唐 (2004),分散式降雨逕流模式之建立及暴雨時期流量之模擬,國立中央大學水文科學研究所碩士論文。
李光敦 (2002),水文學,五南圖書。
莊竣皓 (2006),淡水河流域鹼度與PH值之時空變化--桃園大圳及翡翠水庫,國立中央大學水文科學研究所碩士論文。
陳佩芬、汪中和、何麗如 (1990),台灣的氫氧同位素天水線。地質,10(1): 21-28。
彭宗仁 (1995),宜蘭地區天水和地下水中穩定碳氫氧及放射性碳、氚之環境同位素研究,國立台灣大學地質所博士論文。
彭宗仁、汪中和、劉聰桂 (1992),台北及宜蘭兩地區地表水與地下水穩定碳同位素組成之初步比較。地質,12(2): 199-212。
彭宗仁、汪中和、劉滄棽、洪玉倫 (2002),由氫氧同位素組成顯示南投烏溪上游集水區之水文及環境的意涵。臺灣農業化學與食品科學,40(4): 238-253。
彭宗仁、汪中和、劉滄棽 (2002),宜蘭雨水之氫氧同位素變化。臺灣農業化學與食品科學,40(5): 336-346。
彭宗仁、劉聰桂、汪中和 (1984),宜蘭地區地下水氫氧穩地同位素組成之初步結果。地下水資源及水質保護研討會論文集: 165-184.
鄧亦程 (2006),以三維數值模式探討翡翠水庫之水文特性及水理水質之模式 研究,國立中央大學水文科學研究所碩士論文。
歐陽元淳 (2003),水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立台灣大學地理學研究所碩士論文。
翡翠水庫運轉資料 (2004-2005),翡翠水庫管理局。
翡翠水庫操作年報 (1983-2003) ,翡翠水庫管理局。
翡翠水庫網頁 http://www.feitsui.gov.tw/
我們的翡翠水庫網頁 http://www.ntnu.edu.tw/nature/knowledge
英文參考文獻
Berninkmeijer, C. A. M., P. Kraft, and W. G. Mook (1983). Oxygen isotope fractionation between CO2 and H2O. Isot. Geosci. 1: 181-190.
Berninkmeijer, C. A. M. and P. D. Morrison (1987). An automated system for isotopic equilibration of CO2 and H2O for 18O analysis. Chem. Geol. (Isot. Geosci. Sect.) 66: 21-26.
Bogginga, Y. and Craing, H. (1969). Oxygen isotope fractionation between CO2 and water, and the isotopic composition of marine atmosphere CO2. Earth planet. Sci. Lett. 5: 285-295.
Carol, K. and J.M. Jeffey. (1998) Isotopic Variations in Precipitation. Isotope Tracers in Catchment Hydrology 5: 87-118.
Coleman, M.L., T. J. Shepherd, J. J. Durham, J. E. Rouse, and G. R. Moore. (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 54: 993-995.
Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus 16: 436-468.
Epstein, S. and T. Mayeda. (1993) Variation of O18 Content of Waters from Natural Sources, Geochim. Cosmochim. Acta 4: 213-224.
Eriksson, E. (1983) Tritium and Stable Isotopes in Precipitation. In: Guidebook on Nuclear Techniques in Hydrology, Ch. 2. I.A.E.A. Tech. Rep. Ser. No.91, Vienna, Austria.
Faure, Gunter. (1986) Principles of Isotope Geology, Second Edition. Canada: John Wiley & Sons.
Friedman, I. (1953) Deuterium Content of Natural Waters and Other Substances. Geochim. Acta 4: 213-224.
Gat, J. R. and R. Gonfiantini. (1981) River waters. Stable Isotope Hydrology Deuterium and oxygen-18 in water Cycle 8: 177-201.
Gat, J. R. and R. Gonfiantini. (1981) Properties of the Isotopic of Water: the Isotope effect. Stable Isotope Hydrology Deuterium and oxygen-18 in water Cycle 2: 7-19.
Hoefs, Jochen. (1977) Stable Isotope Geochemistry.
I.A.E.A. (1983): Guidebook on Nuclear Techniques in Hydrology. Tech. Rep. Ser. No. 91, Vienna, Austria.
Ingrahm, N. L. (1998) Isotope Variations in Precipitation. In: Isotope Tracers in Catchment Hydrology (C. Kendall and J. J. McDonnell eds.): 87-118, Elsevier, Amsterdam, the Netherlands.
Lee, K. S., D. B. Wenner, and I. Lee. (1999) Using H- and O-Isotopic Data for Estimating the Relative Contributions of Raniny and Dray Season Precipitation to Groundwater: example from Chehu Island, Korea. Journal of Hydrology 222: 65-74
Liu, K. K. (1984) Hydrogen and Oxygen Isotope Compositions of Meteoric Waters from the Tatun Shan Area, Northern Taiwan. Bull. Inst. Earth Sci., Academia Sinica, 4: 159-175.
Liu, K. K., T. F. Yui, Y. N. Shieh, S. C. Chiang, L. H. Chen, and J.Y. Hu. (1990) Hydrogen and Oxygen Isotope Compositions of Meteoric and Thermal Waters from the Chingshui Geothermal Area, Northeastern Taiwan. Proceed. Geol. Soc. China 33: 143-165.
Longinelli, A. and J. M. Edmond. (1983) Isotope Geochemistry of the Amazon basin: A reconnaissance, Journal of Geophysical Research 88:3703-3717.
M. A. Scholl; U.S. Geological Survey, Reston, Virgini; S. E. Ingebrisen and C. J. Janik; U.S. Geological Survey, Menlo park, California; J. P. Kauahikaua; U.S. Geological Survey, Hawaiian volcano Observatory, Hawaii. (1996) Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area. Water Resources Research 1996
NOAA(2006),http://www.arl.noaa.gov/ready/open/hysplit4.html
Shieh, Y. N., F. P. Cherng, and T. C. Hoering. (1983) Oxygen and Hydrogen Isotope Studies of Meteoric and Thermal Waters in Taiwan. Geol. Soc. China Mem. 5: 127-140.
Wang, C. H. and T. R. Peng. (2001) Hydrogen and oxygen isotopic compositions of Taipei precipitation: 1990 - 1998. Western Pacific Earth Sciences l1(4): 429-442.
Yang, C., K. Telmer, J. Veizer. (1996) Chemical Dynamics of the “St. Lawrence” Reverine System: δDH2O, δOH2O, δCDIC, δ34Ssulfate and Dissolved 87Sr/86Sr. Geochimica et Cosmochimica Acta 60 (5): 851 - 866.
Yoshimura, K., T. Oki, N. Ohte, and S. Kanae1. (2003) A Quantitative Analysis of Short-term 18O Variability with a Rayleigh-type Isotope Circulation Model. Journal of Geophysical Research 108 (20): 4647 - 4660.
指導教授 汪中和、劉康克
(Chung-ho Wang、Kon-Kee Liu)
審核日期 2006-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明