博碩士論文 92625011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.117.216.229
姓名 葉鈞喬(Chin-Chau Yeh)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 風場時空變化對全球大氣-海洋二氧化碳通量計算影響之研究
(An assessment of the effects of windfor temporal and spatial variability on the calculation of global atmosphere-ocean CO2 flux)
相關論文
★ 淡水河口與近海三維水動力模式之模擬與應用★ 極端降雨事件分散式集水區逕流模式之發展與驗證
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 分散式逕流模式應用於石門水庫極端降雨事件之模擬
★ 馬尼拉海溝地震引發海嘯的潛勢分析★ 大甲溪流域上游集水區極端降雨事件之雨型分析與水文模擬
★ 土地利用改變對集水區河川逕流的影響: 以蘭陽溪流域為例★ 應用流場可視化與經驗模態分解探討數值模擬風浪紊流場
★ 分析基流對不同型態極端降雨事件水文模擬之影響─以烏溪流域為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 風場為影響計算大氣-海洋介面二氧化碳通量的重要環境參數,由於不同的風場資料特性以及所使用的風場取樣間期,會造成計算大氣-海洋介面二氧化碳通量的誤差。因此本研究以風場時空變化為主軸,自大氣資料庫獲取八個全球海洋風場資料,使用八種全球海洋月平均風場計算二氧化碳通量,比較風場間的時空差異對於計算全球大氣-海洋二氧化碳通量的影響,並分析在同一種風場中使用長期風場與短期風場計算全球大氣-海洋二氧化碳通量的影響。本研究採用Wanninkhof(1992)的二次風速多項式二氧化碳氣體傳輸速度函式、Wanninkhof與McGillis(1999)的三次風速多項式二氧化碳氣體傳輸速度函式,以及適用於各緯度區域的長期三次風速多項式二氧化碳氣體傳輸速度函式,計算全球大氣-海洋二氧化碳通量。從計算結果我們得知不同風場間的空間分布特性對於影響通量計算的情形較為重要;使用長期風場計算通量的結果會高於使用短期風場的結果,若使用適用於各緯度區域的修正函式,則可降低長期與短期計算結果之間的差異。
關鍵字(中) ★ 海氣交互作用
★ 二氧化碳通量
★ 全球海洋風場
關鍵字(英)
論文目次 摘要...i
誌謝...ii
目錄...iii
圖目錄...vii
表目錄...xviii
1 前言...1
1.1 研究背景簡介...1
1.2 研究目的及論文架構...5
2 全球海洋風場資料之整理與分析...7
2.1 現有全球海洋風場之類型...7
2.2 風場資料的介紹與整理...13
2.2.1 QSCAT-PO.DAAC 衛星遙感探測資料...13
2.2.2 QSCAT-RSS 衛星遙感探測資料...14
2.2.3 SSM/I-RSS 衛星遙感探測資料...14
2.2.4 NRA再分析資料...15
2.2.5 ECMWF再分析資料...16
2.2.6 QSCAT/NCEP合成資料...16
2.2.7 QSCAT-SF合成資料...17
2.2.8 QSCAT-COAPS合成資料...17
2.2.9 其他風場資料...18
2.3 全球海洋風場資料的時間變異特性...20
2.3.1 全球月平均及年平均風速的比較...20
2.3.2 全球月平均風速機率密度函數與累計密度函數的比較...21
2.4 全球海洋風場資料的空間特性...24
2.5 風場資料分析的結果整理與討論...28
3 全球海洋風場時空變化對計算大氣-海洋二氧化碳氣體交換係數K與二氧化碳氣體傳輸速度k的影響...47
3.1 交換係數的環境參數對於計算二氧化碳氣體交換係數k的影響...48
3.1.1 二氧化碳氣體傳輸速度k與海表面高空10公尺風速U10之關係...48
3.1.2 史密特數Sc與溫度之關係...50
3.1.3 二氧化碳氣體溶解度s與溫度、鹽度之關係...51
3.1.4 風速U10、海表面溫度SST、海表面鹽度S對於計算二氧化碳氣體交換係數K的影響...51
3.2 使用不同全球海洋月平均風場對於計算全球二氧化碳氣體交換係數K所造成的差異...54
3.3 使用長期風場與短期風場對於計算全球二氧化碳氣體傳輸速度k所造成的差異...58
3.3.1 以增強因子R討論長期與短期二氧化碳氣體傳輸速度函式在全球區域的適用性...58
3.3.2 推算區域性的長期二氧化碳氣體傳輸速度函式...62
3.3.3 使用長期風場與短期風場對於計算全球二氧化碳氣體傳輸速度k所造成的差異...63
3.4 從風場時空變化分析計算全球大氣-海洋介面二氧化碳氣體交換係數K與二氧化碳氣體傳輸速度k的結果整理與討論...68
4 全球海洋風場時空變化對計算大氣-海洋二氧化碳通量的影響...88
4.1 二氧化碳通量的計算方式與海洋-大氣二氧化碳的分壓差資料說明...88
4.2 使用不同全球海洋風場對於計算大氣-海洋二氧化碳通量所造成的差異...91
4.3 使用長期風場與短期風場對於計算全球大氣-海洋二氧化碳通量的影響...95
4.4 從風場時空變化分析計算全球大氣-海洋介面二氧化碳通量的結果整理與討論...99
5 討論與結論...109
參考文獻...112
A 公式推導...118
A.1 雷利機率函數的推導過程...118
A.2 Wanninkhof(1992)二次風速多項式二氧化碳氣體傳輸速度函式推導過程...120
A.3 Wanninkhof and McGillis(1999)三次風速多項式二氧化碳氣體傳輸速度函式推導過程...122
A.4 增強因子R與風速u關係之推導過程...125
A.5 長期三次風速多項式二氧化碳氣體傳輸速度修正函式之推導...127
參考文獻 [1] A. J. Simmons and J. K. Gibson., 2000. ERA-40 project report series No.1.
www.ecmwf.int/research/era/Project/Plan/Project_plan_TOC.html
[2] Asher, W.E., Karle, L.M., Higgins, B.J., Farley, P.J., Monahan, E.C. and Leifer, I.S., 1996. The influence of bubble plumes on air-seawater gas transfer velocities.J. Geophys. Res., 101(C5), 12027-12041.
[3] Bates N.R. and L. Merlivat, 2001. The influence of short-term wind variability on air-sea CO2 exchange.Geophys Res. Lett.,28(17), 3281-3284.
[4] Broecker, W. S., T.-H. Peng, G. Ostlund, and M. Stuiver, 1985. The distribution of bomb radiocarbon in the ocean.J. Geophys. Res., 90, 6953-6970.
[5] Broecker, and Coauthors, 1986.Isotopic versus micrometeorologic ocean CO2 fluxes:A serious conflict.J. Geophys. Res.,91, 10,517-10,527.
[6] Carr, M.-E., Tang, W. and Liu, W.T.,2002, CO2 exchange coefficients from remotely sensed wind speed measurements: SSM/I versus QuickSCAT in 2000. Geophys. Res. Lett.,29(15),doi:10.1029/2002GL015068.
[7] Cember, R., 1989. Bomb radiocarbon in the Red Sea:A medium-scale gas exchange experiment.J. Geophys. Res., 94, 2111-2123.
[8] Description of SSM/I Data Products.,Remote Sensing System.
www.ssmi.com/ssmi/ssmi_description.html
[9] Description of Scatterometer Data Products.,Remote Sensing System.
www.ssmi.com/qscat/qscat_description.html
[10] Ebuchi N., 1999. Statistical distribution of wind speeds and directions globally observed by NSCAT J. Geophys. Res.,104 (C5), 11393-11403.
[11] Etcheto, J. and Merlivat, L., 1988. Satellite determination of the carbon dioxide exchange coefficient at the ocean-atmosphere interface: A first step. J. Geophys. Res.,93(C12), 15669-15678.
[12] Feely, R. A., R. Wanninkhof, W. McGillis, M.-E. Carr, and C. E. Cosca, 2004, Effects of wind speed and gas exchange parameterizations on the air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res.,109, C08S03, doi:10.1029/2003JC001896.
[13] Frew, N.M., Goldman, J.C., Dennett, M.R. and Johnson, A.S., 1990. Impact of phytoplankton-generated surfactants on air-sea gas exchange. J. Geophys. Res., 95(C3), 3337-3352.
[14] Goswami, B. N. and Sengupta, D. 2003.A note on the deficiency of NCEP/NCAR reanalysis surface winds over the Indian Ocean. J. Geophys. Res.,108, doi:10.1029/2002JC001479.
[15] Hashizume H., Liu W. T., 2004. Systematic error of microwave scatterometer wind related to the basin-scale plankton bloom Geophys. Res. Lett.,29(15), doi:10.1029/2002GL015068.
[16] Hennessey, J. P., 1977. Some aspects of wind power statistics. J. Appl. Meteorol.,16, 119-128.
[17]Ho, D.T., Bliven, L.F., Wanninkhof, R. and Schlosser, P., 1997. The effect of rain on air-water gas exchange. Tellus,49 B(2), 149-158.
[18]Ho, D.T., Asher WE, Bliven LF, et al., 2000.On mechanisms of rain-induced air-water gas exchange. J. Geophys. Res.105 (C10), 24045-24057.
[19] Jahne, B., Heinz, G. and Dietrich, W., 1987. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res.,92(C10), 10767-10776.
[20] Jensen, N. O., E. L. Petersen and I. Troen, 1984. Extrapolation of mean wind statistics with special regard to wind energy application. WMO Rep.,WMO/TD-NO 15, WCP-86, 85pp
[21]Justus, C., W. Hargraves, A. Mikhail, and D. Graber, 1978. Methods for estimating wind speed frequency distributions. J. Appl. Meteor.,17, 350-353.
[22]Kalnay, E., and Coauthors, 1996. The NCEP/NCAR 40-Year Reanalysis Project.
Bull. Amer. Meteor. Soc., 77, 437-471.
[23]Keeling, R.F. 1993, On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J. Marine Res.,51,237-271.
[24] Ledwell, J. R., 1982. Gas exchange across the air-water interace, Ph. D. thesis, Harvard Univ., Cambrige, Mass.
[25] Ledwell, J. R., 1984. The variation of the gas transfer coefficient with molecular diffusity, in Gas Transfer at Water Suraces, edited by W. Brutsaert and G. H. Jirka,pp. 293-302, D. Reidel, Hingham, Mass.
[26]Liu, W. T., 2002, Progress in scatterometer application, Journal of Oceanography, 58, 121-136.
[27] Mark A. Bourassa, Shawn R. Smith, and James J. O'Brien, 2002. Assimilation of Scatterometer and In Situ Winds for Regularly Gridded Products. Sixth Symposium on Integrated Observing Systems, 4.9
[28] Meissner, T., D. Smith, and F. Wentz, 2001. A 10-year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses.J. Geophys. Res., 106(C6),11731-11742.
[29] NOAA/NASA AVHRR Oceans Pathfinder Sea Surface Temperature Data Set User's Reference Manual Version 4.0. Jet Propulsion Laboratory.
podaac.jpl.nasa.gov/pub/sea_surface_temperature/avhrr/pathfinder/doc/usr_gde4_0_toc.html
[30]QSCAT-DIRTH and NCEP blended winds method description.
www.cora.nwra.com/~morzel/blendedwinds.qscat.dirth.2002.html
[31]SeaWinds on QuikSCAT Level 3 Daily, Gridded Ocean Wind Vectors Guide Document.Jet Propulsion Laboratory.
podaac.jpl.nasa.gov/podaac_web/quikscat/qscat_doc.html
[32] Smith, S. R., Legler, D. M. and Verzone, V., 2001. Quantifying uncertainties in NCEP reanalyses using high quality research vessel obervations.J. Clim., 14, 4062-4072.
[33] Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N. et al.,2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects.Deep Sea Res. II, 49,1601-1622.
[34] Tsai, W.-T, and K.-K. Liu, 2003, An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux. J. Geophys. Res.,108(C4), 3127, doi:10.1029/2000JC000740.
[35] Wanninkhof, R., 1992. Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res.,97,7373-7382.
[36] Wanninkhof, R., and W. R. McGillis, 1999. A cubic relationship between air-sea CO2 exchange and wind speed.Geophys Res. Lett.,26, 1889-1892.
[37] Wanninkhof, R., Doney, S.C., Takahashi, T., McGillis, W.R., 2002. The effect of using time-averagedwind s on regional air-sea CO2 fluxes. In: Donelan M., Drennan W., Saltzman E., Wanninkhof R. (Eds.), Gas Transfer at Water Surfaces, AGU Geophys. Monograph 127, Washington, DC. 351-356.
[38]Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem., 2, 203-215.
[39] Wentz, F. J., S. Peteherych, and L. A. Thomas, 1984. A model function for ocean radar cross sections at 14.6 GHz. J. Geophys. Res.,89, 3689-3704.
[40] World Ocean Atlas 2001 Data Set Documentation Ocean Climate Laboratory National Oceanographic Data Center.
www.nodc.noaa.gov/OC5/WOA01/docwoa01.html
[41] W. Tang and Liu, W. T., 1996. Objective interpolation of scatterometer winds, JPL Pub. 96-19, Jet Propulsion Laboratory, Pasadena, 16pp.
[42] 蔡武廷(2000) <全球海洋二氧化碳通量的高解析度計算> 《八十九年度國科會/環保署科技合作研究計畫定稿報告書》
指導教授 蔡武廷(Wu-Ting Tsai) 審核日期 2005-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明