博碩士論文 92641003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.15.226.173
姓名 青麟(Lin Ching)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 西北太平洋熱帶氣旋生成之多尺度分析
(An analysis of multi-scale nature of tropical cyclogenesis over the western North Pacific in June 2004)
相關論文
★ 全球與區域水氣收支初步分析★ 夏季西北太平洋副熱帶高壓之年際及年代際變化
★ 藉由雷達模擬軟體QuickBeam探討雲與降水遙測之原理★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化
★ 影響夏季西北太平洋副熱帶高壓年際變化之氣候因子★ 伴隨氣候變化的台灣地區降雨特性分析
★ 納莉颱風(2001)之水收支分析★ WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究
★ 台灣地區極端降雨颱風之環境特徵合成分析★ 納莉颱風(2001)之位渦收支分析
★ 西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較★ 颮線與山脈地形的交互作用:理想模擬研究
★ 雲凝結核濃度對於納莉(2001)颱風於海洋環境之影響★ 颱風路徑、降雨及水位之系集模擬研究: 以凡那比(2010)颱風個案為例
★ 雲微物理參數化法及垂直解析度對降水模擬之影響: 以莫拉克(2009)颱風為例★ 使用WRF理想模組討論颮線系統與山脈地形之交互作用-水收支及降水效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2004年六月有破紀錄的五個熱帶氣旋(TC)生成在西北太平洋(WNP),此異常的六月處在聖嬰發展階段,並且受到一個MJO對流相位所影響,聖嬰發展期的暖海溫距平和MJO的對流加熱導致赤道東風減弱,並在WNP產生大尺度的氣旋式環流距平,且伴隨MJO而有許多活耀的熱帶波動活動。我們對向外長波輻射(OLR)和低層(850hPa)風場做波數-頻率波譜分析方法,分解出MJO、Rossby波和MRG-TD波,其中MJO和氣候背景在WNP產生加熱並加強低層氣旋環流,會影響赤道Rossby波和MRG-TD波的發展、傳播與能量傳遞。因此,在多重尺度波動貢獻的有利環境下,使得2004年六月有異常多的TC生成。
為了進一步瞭解多重尺度波動跟熱帶氣旋生成的過程,我們將渦度場跟風場分解成低頻波動場和高頻波動場部分,低頻波動場中含五個部份即氣候尺度(Cli)、年際變化尺度(IAV)、季內震盪尺度(MJO)、赤道Rossby波(ER)、以及混合Rossby重力波和氣旋波動擾動(MRG-TD),在此五個波段以外的部分即為高頻波動場。經過尺度分離後,低頻波動場能夠清楚表現出大尺度環境場的狀態,而高頻波動場則可保留高頻擾動的特性。接著,我們計算跟隨TC移動座標(TC-following coordinate)之渦度收支來探討高低頻波動跟TC間的交互作用。其中渦度收支中的餘差項(R)可以解釋成無法解析的高頻變化,主要包含了小尺度的對流。之後,將渦度收支中的貢獻項分成平衡動力和非線性動力兩部分:平衡動力項包含了渦度方程中低頻場的輻合項(D1)和傾斜項(T1)、高低頻場互乘的輻合項(D23)和傾斜項(T23);非線性動力項則包含了高頻場的輻合項(DD)和傾斜項(TD)及表示對流過程貢獻的餘差項。
透過渦度收支計算,顯示TC A生成的主要貢獻為平衡動力過程,由一東風波移進季風槽,進而產生的高低頻波動間線性交互作用(D23項)。TC B生成的主要貢獻是透過非線性過程,由一幾乎靜止的局部擾動發展而成(R項)。TC C生成於MJO在WNP區域活耀相位時,其生成始於一東風波擾動在季風風切帶內傳播進而發展成熱帶氣旋,擾動的快速發展(R項)以及低頻波動在季風風切帶的貢獻都影響著TC C的生成過程。TC D生成的主要是由低頻波動所貢獻(D1項),擾動隨著低頻波動所產生的季風渦旋往西北移動、集中並發展成熱帶氣旋。TC E生成時受到季風合流的影響,因此生成過程主要是透過平衡動力過程。綜合以上結果,在2004年生成的5個TC中有4個的生成過程都主要與平衡動力項有關,顯示低頻波動的貢獻和高低頻波動間的交互作用在2004年六月提供了有利TC生成的環境條件,且低頻波動的貢獻(D1)在TC C、D、E生成過程中都佔很大比重,即可對應六月中下旬的低頻波動特別活耀現象。而非線性動力項則在渦度快速增加時居最大項,表示對流尺度和次網格尺度在TC快速發展時的主導作用。總言之,我們透過尺度分離將高低頻波動場分離,可以清楚地辨識出大尺度背景場和擾動場個別的特性,而跟隨TC渦度中心的渦度收支可以量化高低頻波動跟熱帶氣旋生成間的交互作用,藉以了解不同尺度波動與TC生成的關係。
摘要(英) Record-breaking five tropical cyclones (TCs) formed in June 2004 in the western North Pacific (WNP) where June is normally a transition month to the typhoon season and therefore sensitive to climate oscillations. This special month (June 2004) was an unusual period in the developing stage of a warm (El Nino) episode and a strong convective phase of the Madden-Julian oscillation (MJO). Such climate background is shown to provide large-scale favorable circulations for TC formation: the warm sea surface temperature anomalies (SSTAs) associated with developing El Nino and convective heating of the MJO to jointly induce weaker easterly trade winds and a large-scale cyclonic circulation anomaly in the WNP. A space-time filtering of the outgoing longwave radiation (OLR) and 850-hPa wind fields is performed to identify the MJO, Rossby waves and mixed Rossby-gravity (MRG) waves (or tropical depression (TD)-type disturbances). From the evolution and structure of these high-frequency waves in relation to that of the MJO and the climate background, the heating and enhanced low-level cyclonic flow in the WNP associated with the MJO and climate background are attributed to the initiation, propagation and energy dispersion of tropical Rossby and MRG-TD waves, interacting with convection.
In order to examine the relationship between multi-scale waves and TC formation, the vorticity and wind fields were separated into low-frequency and high-frequency variations by space-time filtering. The low-frequency variation included five scale variables: climatology (Cli), interannual variability (IAV), intraseasonal variability (ISV), equatorial Rossby wave (ER), and mixed Rossby-gravity wave and TD-type disturbance (MRGTD). The remaining component was classified to the high-frequency variation. The scale separation help us to clarify the roles of low-frequency and high-frequency variations on TC formation. Then, the vorticity budget on TC-following coordinate was calculated to examine the interaction between waves and TC. Therefore, the generation terms in vorticity budget can be separated into the balanced dynamics (BD) and nonlinear dynamics (ND). The balanced dynamics included the low-frequency waves interaction and the low- and high-frequency waves interaction. Nonlinear dynamics indicated the nonlinear processes of the convective scale and sub-scale variations. The dominated terms in vorticity budget were the balanced dynamics for four TCs in June 2004, which means that the contributions of low-frequency waves and the low- and high-frequency waves interaction created large-scale favorable environmental conditions for TC genesis. The large contributions of low-frequency waves in TC C, D, and E corresponded to the the active waves in mid- and late June. The vorticity budget can identify the relation between low- and high-frequency waves and TC, which can help us to understand the interaction between waves and TC genesis.
關鍵字(中) ★ 熱帶氣旋
★ 渦度收支
★ 熱帶波動
關鍵字(英) ★ tropical cyclongenesis
★ tropical waves
★ vorticity budget
論文目次 摘 要 i
Abstract iii
誌 謝 v
目 錄 vii
表目錄 vii
圖目錄 viii
一、前 言 1
二、使用資料與研究方法 6
2.1 資料與分析方法 6
2.2 TC個案介紹 10
2.3 高低頻尺度分離方法 11
2.4 跟隨TC移動座標之渦度收支 12
三、氣候背景對於TC生成之影響 16
四、2004年六月熱帶波動之活動 20
4.1 Rossby波的演變與結構 20
4.2 MRG-TD波的結構 21
五、高低頻波動對於TC生成過程之貢獻 23
5.1 2004年六月TC生成的演變 23
5.2 TC生成時之高低頻波動貢獻 28
六、結論與討論 33
參考文獻 37
表 46
圖 50
附 錄 72
參考文獻 [1] Kim, J.-H., C.-H. Ho, and C.-H. Sui, “Circulation features associated with the record-breaking typhoon landfall on Japan in 2004”, Geophys. Res. Lett., Vol 32, L14713, doi:10.1029/2005GL022494, 2005.
[2] Nakazawa, T., “Madden–Julian oscillation activity and typhoon landfall on Japan in 2004”, Sci. Online Lett. Atmos., Vol 2, pp. 136–139, 2006.
[3] Madden, R. A., and P. R. Julian, “Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific”, J. Atmos. Sci., Vol 28, pp. 702–708, 1971.
[4] Chan, J. C. L., J. E. Shi, and C. M. Lam, “Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea”, Weather Forecast., Vol 13, pp. 997–1004, 1998.
[5] Chia H. H., and C. F. Ropelewski, “The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific”, J. Clim., Vol 15, pp. 2934–2944, 2002.
[6] Wang, B., and J. C. L. Chan, “How strong ENSO events affect tropical storm activity over the Western North Pacific”, J. Clim., Vol 15, pp. 1643–1658, 2002.
[7] Chen, T.-C., S.-Y. Wang, M.-C. Yen, and W. A. Gallus, “Role of the monsoon gyre in the interannual variation of tropical cyclone formation over the western North Pacific”, Weather Forecast., Vol 19, pp. 776–785, 2004.
[8] Chen, T.-C., S.-Y. Wang, and M.-C. Yen, “Interannual variation of the tropical cyclone activity over the western North Pacific”, J. Clim., Vol 19, pp. 5709–5720, 2006.
[9] Camargo, S. J., and A. H. Sobel, “Western North Pacific tropical cyclone intensity and ENSO”, J. Clim., Vol 18, pp. 2996−3006, 2005.
[10] Hsu, P.-C., C.-H. Tsou, H.-H. Hsu, and J.-H. Chen, “Eddy energy along the tropical storm track in association with ENSO”, J. Meteorol. Soc. Jpn., Vol 87, pp. 687-704, 2009.
[11] Landsea, C. W., “El Nino–Southern Oscillation and the seasonal predictability of tropical cyclones”, in El Nino: Impacts of multiscale variability on natural ecosystems and society, edited by H. F. Diaz and V. Markgraf, pp. 149-181, Cambridge Univ. Press, Cambridge, 2000.
[12] Chu, P.-S., “ENSO and tropical cyclone activity”, in Hurricanes and Typhoons: Past, Present, and Potential, edited by R. J. Murnane and K. B. Liu, pp. 297-332, Columbia Univ. Press, New York, 2004.
[13] Chan, J. C. L., “Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific”, Meteorol. Atmos. Phys., Vol 89, pp. 143–152, 2005.
[14] Nakazawa, T., “Intraseasonal variations of OLR in the Tropics during the FGGE year”, J. Meteorol. Soc. Jpn., Vol 64, pp. 17–34, 1986.
[15] Liebmann, B., H. H. Hendon, and J. D. Glick, “The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation”, J. Meteorol. Soc. Jpn., Vol 72, pp. 401–411, 1994.
[16] Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, “Potential vorticity, eaterly waves, and eastern Pacific tropical cyclogenesis”, Mon. Weather Rev., Vol 125, pp. 2699–2708, 1997.
[17] Molinari, J., and D. Vollaro, “Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis”, Mon. Weather Rev., Vol 128, pp. 3296–3307, 2000.
[18] Maloney, E. D., and D. L. Hartmann, “Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian Oscillation”, Science, Vol 287, pp. 2002–2004, 2000.
[19] Maloney, E. D., and D. L. Hartmann, “Modulation of eastern North Pacific hurricance by the Madden–Julian oscillation”, J. Atmos. Sci., Vol 13, pp. 1451–1460, 2000.
[20] Maloney, E. D., and D. L. Hartmann, “The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations”, J. Atmos. Sci., Vol 58, pp. 2545–2558, 2001.
[21] Hall, J. D., A. J. Matthews, and D. J. Karoly, “The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation”, Mon. Weather Rev., Vol 129, pp. 2970–2982, 2001.
[22] Straub, K. H., and G. N. Kiladis, “Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity”, Mon. Weather Rev., Vol 131, pp. 945-960, 2003.
[23] Bessafi, M., and M. C. Wheeler, “Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively- coupled equatorial waves”, Mon. Weather Rev., Vol 134, pp. 638–656, 2006.
[24] Frank, W. M., and P. E. Roundy, “The role of tropical waves in tropical cyclogenesis”, Mon. Weather Rev., Vol 134, pp. 2397–2417, 2006.
[25] Harr, P. A., “Temporal clustering of tropical cyclone occurrence on intraseasonal time scales”, paper presented at 27th Conference on Hurricanes and Tropical Meteorology, Am. Meteorol. Soc., Monterey, CA, 2006.
[26] Ho, C.-H., J.-H. Kim, J.-H. Jeong, H.-S. Kim, and D. Chen, “Variation of tropical cyclone activity in the South Indian Ocean: El Nino-Southern Oscillation and Madden–Julian Oscillation effects”, J. Geophys. Res., Vol 111, D22101, doi:10.1029/2006JD007289, 2006.
[27] Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, “Systematic variation of summertime tropical cyclone activity in the Western North Pacific in relation to the Madden–Julian Oscillation”, J. Clim., Vol 21, pp. 1171-1191, 2008.
[28] Matsuno, T., “Quasi-geostrophic motions in the equatorial area”, J. Meteorol. Soc. Jpn., Vol 44, pp. 25–43, 1966.
[29] Yanai, M., and T. Maruyama, “Stratospheric wave disturbances propagating over the equatorial Pacific”, J. Meteorol. Soc. Jpn., Vol 44, pp. 291–294, 1966.
[30] Lindzen, R. D., “Planetary waves on beta-planes”, Mon. Weather Rev., Vol 95, pp. 441–451, 1967.
[31] Takayabu, Y. N., “Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances”, J. Meteorol. Soc. Jpn., Vol 72, pp. 433–449, 1994.
[32] Wheeler, M., and G. N. Kiladis, “Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain”, J. Atmos. Sci., Vol 56, pp. 374–399, 1999.
[33] Wheeler, M., G. N. Kiladis, and P. J. Webster, “Large-scale dynamical fields associated with convectively coupled equatorial waves”, J. Atmos. Sci., Vol 57, pp. 613–640, 2000.
[34] Wallace, J. M., and C.-P. Chang, “Spectral Analysis of Large Scale Wave Disturbances in the Lower Tropical Troposphere”, J. Atmos. Sci., Vol 26, pp. 1010–1025, 1969.
[35] Reed, R. J., and E. E. Recker, “Structure and Properties of Synoptic-scale Wave Disturbances in the Equatorial Western Pacific”, J. Atmos. Sci., Vol 28, pp. 1117–1133, 1971.
[36] Liebmann, B., and H. H. Hendon, “Synoptic-scale Disturbances near the Equator”, J. Atmos. Sci., Vol 47, pp. 1463–1479, 1990.
[37] Hendon, H. H., and B. Liebmann, “The Structure and Annual Variation of Antisymmetric Fluctuations of Tropical Convection and Their Association with Rossby–Gravity Waves”, J. Atmos. Sci., Vol 48, pp. 2127–2140, 1991.
[38] Dunkerton, T. J., “Observation of 3–6-day Meridional Wind Oscillations over the Tropical Pacific, 1973–1992: Vertical Structure and Interannual Variability”, J. Atmos. Sci., Vol 50, pp. 3292–3307, 1993.
[39] Dunkerton, T. J., and M. P. Baldwin, “Observation of 3–6-day Meridional Wind Oscillations over the Tropical Pacific, 1973–1992: Horizontal Structure and Propagation”, J. Atmos. Sci., Vol 52, pp. 1585–1601, 1995.
[40] Takayabu, Y. N., and T. Nitta, “3–5 day-period disturbances coupled with convection over the tropical Pacific ocean”, J. Meteorol. Soc. Jpn., Vol 71, pp. 221–246, 1993.
[41] Dickinson, M., and J. Molinari, “Mixed Rossby-gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution”, J. Atmos. Sci., Vol 59, pp. 2183–2196, 2002.
[42] Lau, K.-H., and N.-C. Lau, “Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances”, Mon. Weather Rev., Vol 118, pp. 1888–1913, 1990.
[43] Lau, K.-H., and N.-C. Lau, “The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances”, Mon. Weather Rev., Vol 120, pp. 2523–2539, 1992.
[44] Chang, C.-P., J. M. Chen, P. A. Harr, and L. E. Carr, “Northwestward- propagating wave patterns over the tropical western North Pacific during summer”, Mon. Weather Rev., Vol 124, pp. 2245–2266, 1996.
[45] Maloney, E. D., and M. J. Dickinson, “The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic- scale disturbances”, J. Atmos. Sci., Vol 60, pp. 2153–2168, 2003.
[46] Ko, K.-C., and H.-H. Hsu, “Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July–August season”, J. Meteorol. Soc. Jpn., Vol 84, pp. 871−889, 2006.
[47] Ko, K.-C., and H.-H. Hsu, “ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western North Pacific”, J. Clim., Vol 22, pp. 582−599, 2009.
[48] Hsu, H.-H., C.-H. Hung, A.-K. Lo, and C.-W. Hung, “Influence of tropical cyclone on the estimation of climate variability in the tropical western North Pacific”, J. Clim., Vol 21, pp. 2960–2975, 2007.
[49] Chen, G., and R. H. Huang, “Interannual variation of the mixed Rossby-gravity waves and their impact on tropical cyclogenesis in the western North Pacific”, J. Clim., Vol 22, pp. 535−549, 2009.
[50] Chen, G., and C.-H. Sui, “Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer”, J. Geophys. Res., Vol 115, D14113, doi:10.1029/2009JD013389, 2010.
[51] Holland, G. J., “Scale Interaction in the Western Pacific Monsoon”, Meteorol. Atmos. Phys., Vol 56, pp. 57–79, 1995.
[52] Sobel, A. H., and C. S. Bretherton, “Development of synoptic-scale disturbances over the summertime tropical Northwest Pacific”, J. Atmos. Sci., Vol 56, pp. 3106–3127, 1999.
[53] Kuo, H.-C., J.-H. Chen, R. T. Williams, and C.-P. Chang, “Rossby waves in zonally opposing mean flow: Behavior in Northwest Pacific summer monsoon”, J. Atmos. Sci., Vol 58, pp. 1035–1050, 2001.
[54] Fu, B., T. Li, M.S. Peng, and F. Weng, “Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001”, Weather and Forecast., Vol 22, pp. 763–780, 2007.
[55] Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, “NCEP-ODE AMIP-II reanalysis (R-2)”, Bull. Am. Meteorol. Soc., Vol 83(11), pp. 1631–1643, 2002.
[56] Kanamitsu, M., “Description of the NMC global data assimilation and forecast system”, Weather Forecast., Vol 4, pp. 335–342, 1989.
[57] Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, “Daily high-resolution blended analyses for sea surface temperature”, J. Clim., Vol 20, pp. 5473-5496, 2007.
[58] Liebmann, B., and C. A. Smith, “Description of a complete (interpolated) outgoing longwave radiation dataset”, Bull. Am. Meteorol. Soc., Vol 77, pp. 1275-1277, 1996.
[59] Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, “The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945-2000”, NRL Reference Number: NRL/MR/7540-02-16, 2002.
[60] Xue, Y., T. M. Smith, and R. W. Reynolds, “Interdecadal changes of 30-yr SST normals during 1871-2000”, J. Clim., Vol 16, pp. 1601-1612, 2003.
[61] Wheeler, M., and H. Hendon, “An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction”, Mon. Weather Rev., Vol 132, pp. 1917–1932, 2004.
[62] Murakami, M., “Analysis of the deep convective activity over the western Pacific and Sputheast Asia. Part I: Diurnal variation”, J. Meteorol. Soc. Jpn, Vol 61, pp. 60–76, 1983.
[63] Chen, G. T. J., and L. F. Bosart, “A quasi-Lagrangian vorticity budget of composite cyclone-anticyclone couplets accompanying North American polar air outbreaks”, J. Atmos. Sci., Vol 36, pp. 185–194, 1979.
[64] Xie, X., and B. Wang, “Low-frequency equatorial waves in vertically sheared zonal flow. Part II: unstable waves”, J. Atmos. Sci., Vol 53, pp. 3589-3605, 1996.
[65] Ge, X., T. Li, and X. Zhou, “Tropical cyclone energy dispersion under vertical shears”, Geophys. Res. Lett., Vol 34, L23807, doi:10.1029/ 2007GL031867, 2007.
[66] Fukutomi, Y. and T. Yasunari, “10-25 day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer”, J. Meteorol. Soc. Jpn, Vol 77, pp. 753–769, 1999.
[67] Briegel, L. M., and W. M. Frank, “Large-scale influences on tropical cyclogenesis in the western North Pacific”, Mon. Weather Rev., Vol 125, pp. 1397–1413, 1997.
[68] Richie, E. A., and G.. J. Holland, “Large-scale patterns associated with tropical cyclogenesis in the western Pacific”, Mon. Weather Rev., Vol 127, pp. 2027–2043, 1997.
[69] Li, T., B. Fu, X. Ge, B. Wang, and M. Peng, “Satellite data analysis and numerical simulation of tropical cyclone formation”, Geophys. Res. Lett., Vol 30, 2122, doi:10.1029/2003GL018556, 2003.
[70] Li, T., and B. Fu, “Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses”, J. Atmos. Sci., Vol 63, pp. 1377–1389, 2006.
[71] Aiyyer, A. R., and J. Molinari, “Evolution of mixed Rossby–gravity waves in idealized MJO environments”, J. Atmos. Sci., Vol 60, pp. 2837–2855, 2003.
[72] Chatterjee, P., and B. N. Goswami, “Structure, genesis and scale selection of the tropical quasi-biweekly mode”, Q. J. R. Meteorol. Soc., Vol 130, pp. 1171–1194, 2004.
[73] Tam, C.-Y., and T. Li, “The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the Western Pacific”, Mon. Weather Rev., Vol 134, pp. 1630-1646, 2006.
指導教授 隋中興、楊明仁
(Chung-Hsiung Sui、Ming-Jen Yang)
審核日期 2011-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明