博碩士論文 92641004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.234.51.17
姓名 陳舒雅(Shu-Ya Chen)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 GPS掩星觀測資料同化及對區域天氣預報模擬之影響
(Assimilation of GPS radio occultation data and its impact on regional weather prediction)
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響
★ 資料同化對台灣地區颱風和梅雨模擬之影響★ 聖帕颱風模擬的位渦反演之診斷分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 觀測反演(假設球對稱)的大氣折射率與真正的局地折射率,兩者間存在代表性的誤差。Sokolovskiy et al. (2005a,b)提出一向前模式算子,將模式局地與觀測折射率沿著掩星射線方向積分(此積分量稱為溢相值excess phase),考慮了大氣水平梯度的效應,使代表性誤差得以減少,此同化算子稱為非局地算子(nonlocal operator)。本研究目的之一為發展非局地同化算子,並將之導入於WRF 3DVAR,同時利用2007年冬季和夏季各一個月的福爾摩沙衛星三號(FORMOSAT-3/COSMIC)掩星折射率資料,針對溢相值及折射率,進行觀測誤差統計,發現折射率之觀測誤差大約為溢相值的2 倍,而觀測誤差隨緯度變化,且以冬季低層最為顯著,在夏季則不明顯。
本研究針對2006 年的珊珊(Shanshan)颱風,探討此非局地算子同化能力的表現。非局地算子與局地算子,前者所產生的增量值稍大,且沿射線方向發展,呈橢圓形分布。當僅同化27 筆福衛三號折射率探空,WRF 模式的路徑及降雨模擬結果顯示,在初期二者較無同化實驗者略為改善,後期之降雨預報則顯示,使用非局地算子較使用局地算子略佳。以GPS 掩星觀測驗證預報的環境場,發現當同化傳統觀測資料時,若同時同化GPS 掩星觀測,對於初期預報有顯著改善(尤以5公里以下),而在後期亦有些改善,但使用局地或非局地運算子的效益則無明顯差異。若同時同化颱風虛擬渦旋,使颱風初始強度明顯增強,因而有較佳的路徑及降雨預報,其同化的影響使得其他觀測資料的同化效果相對不明顯。週期性同化實驗(Cycling Run)則顯示同化更多的觀測資料,使路徑及強度預報皆有較佳的表現。整體而言,GPS的同化效益使得模擬後期的大雨預報技術得分增加。
本研究另使用觀測系統模擬實驗(OSSE),利用高解析度MM5模式模擬珊珊颱風,提供真實大氣條件,以確實了解資料同化對於颱風預報的影響。藉由二維射線追蹤方法,以及假設球對稱情形下,反演出非局地折射率的垂直探空。將此高解析度資料分為三區域,AREA1著重於颱風東北方之太平洋高壓區域,AREA2 主要以颱風東側之環境流場為主,AREA3 則是針對颱風暴風範圍之影響,同化的探空資料數分別為30、96及16筆。與真實大氣比較,使用不同的同化運算子時,初始的分析誤差在AREA1 及AREA3 有明顯的差異,而在AREA2 則相似,可能與後者的水平梯度較弱有關。若同化AREA1 中的30筆觀測資料,顯示所有同化算子之路徑預報,較無同化實驗之結果略為改善。當同化位於颱風範圍內(AREA3) 的16 點觀測資料,颱風路徑預報顯示,非局地算子較局地算子進一步改善模式初始場,進而得到較佳的路徑預報。然而,同化AREA2 的觀測資料,其路徑預報卻較無同化實驗差,原因可能來自於模式反演出的折射率探空與真實大氣有些微差異,而颱風路徑預報對於上游環境場之初始微幅差異較敏感所致。
摘要(英) GPS radio occultation (RO) refractivity was retrieved with the assumption of spherical symmetry, possessing representative errors for the true state. Sokolovskiy et al. thus suggested a nonlocal observable (excess phase, defined as the integrated refractivity along a fixed raypath) to account for the effect of horizontal gradients existing in the true state, and this forward model was called the nonlocal operator. One of the main goals of this study is to develop the nonlocal operator for implementation into WRF 3DVAR. In addition, we estimated the observational errors for both excess phase and refractivity data during two months in 2007, one in summer and the other in winter. The observational errors of excess phase are roughly one half of the refractivity errors, regardless of the winter or summer month. Both observational errors are dependent on latitude, but such dependence is stronger at the lower levels in the winter month and is less pronounced in the summer month.
This study investigates the performance of the nonlocal operator in typhoon forecast for Shanshan (2006) using WRF. The model initial increments from the nonlocal operator are slightly larger and are somewhat extended along the raypath in elliptical contours as compared to those from the local operator. Typhoon track and recipitation forecasts show slight improvement for the first day when 27 refractivity soundings are assimilated into WRF. For local rainfall forecast at later time, the performance of the nonlocal operator is slightly better than the local operator. Verified against GPS RO observations for the environmental prediction, assimilation of GPS RO data shows improvement of early prediction (especially for the levels below 5 km) as the conventional GTS data are also assimilated; however, no significant improvement was found at later prediction for both nonlocal operator and local operator. As a bogus vortex is also combined into assimilation, initial typhoon intensity is enhanced and thus results in better track and rainfall prediction. The impact of bogus vortex overwhelms the impacts of all other data in this study. The cycling run shows that typhoon intensities and tracks can be further improved when more observational data can be assimilated at different times. In general, the impact of GPS RO data assimilation increases the skill score of prediction for local intense daily rainfall.
Observing Systems Simulation Experiments (OSSE) were designed to explore the impact of GPS RO data assimilation on weather prediction using high-resolution MM5 model for the modeled atmosphere providing the true state. Vertical soundings of nonlocal refractivity as modeled by a 2-D raytracing operator under the assumption of spherical symmetry then were assimilated into OSSE. The nonlocal refractivity soundings were produced for three assimilated areas, AREA1 to the northeast of the typhoon over the edge of Pacific high, AREA2 to the east of the typhoon over the environmental flow, and AREA3 over the region of typhoon circulation, with 30, 96 and 16 soundings, respectively. Verified against the true state, the initial analysis errors in AREA1 and AREA3 are quite different but are similar in AREA2 for different operators, possibly due to weaker horizontal gradients existing in the latter. Slight improvement in track prediction is found for all the operators when the 30 soundings in AREA1 were ingested. The initial condition and the ensuing tracks were more improved for the nonlocal operator than local operator as the 16 soundings in AREA3 were assimilated. The track prediction with assimilation in AREA 2 becomes worse compared to that without assimilation. It appears that typhoon track is sensitive to initial tiny discrepancies in this upstream steering environment, which can be produced by the refractivity soundings as simulated by the model.
關鍵字(中) ★ 資料同化
★ 模擬預報
★ WRF模式
★ 觀測系統模擬實驗
★ 掩星觀測
關鍵字(英) ★ OSSE
★ WRF model
★ simulation
★ data assimilation
★ GPS radio occultation
論文目次 中文摘要………………………………………………………………I
英文摘要………………………………………………………………III
致謝……………………………………………………………………V
目錄……………………………………………………………………VI
圖表說明……………………………………………………………VIII
第一章 前言……………………………………………………………1
第二章 觀測原理及資料處理過程……………………………………8
2.1 GPS 掩星觀測………………………………………………………8
2.2 GPS RO 觀測及同化變數…………………………………………9
2.3 同化運算子………………………………………………………11
2.4 颱風虛擬渦旋……………………………………………………16
第三章 同化系統及模式簡介…………………………………………18
3.1 WRF 模式系統及三維變分同化系統……………………………18
3.2 背景誤差…………………………………………………………20
3.3 GPS RO 觀測誤差估計……………………………………………22
第四章 模擬實驗與討論………………………………………………31
4.1 模式參數設定與觀測資料………………………………………31
4.2 GPS RO 單點測試及多點掩星觀測同化…………………………33
4.3 實驗設計與模擬結果……………………………………………35
4.4 分析與討論………………………………………………………38
4.5 敏感度實驗………………………………………………………40
4.5.1 觀測誤差與背景誤差之敏感度實驗…………………………40
4.5.2 週期性同化實驗(Cycling Run)………………………………44
4.6 降水預報…………………………………………………………46
第五章 觀測系統模擬實驗……………………………………………50
5.1 射線追蹤法及實驗設計…………………………………………50
5.2 背景誤差測試……………………………………………………53
5.3 模擬結果…………………………………………………………54
第六章 結論………………………………………………………………………57
參考文獻………………………………………………………………………62
附表與附圖……………………………………………………………67
參考文獻 王潔如,2004:侵台颱風之GPS 折射率3DVAR 資料同化及數值模擬。
國立中央大學,大氣物理研究所,碩士論文,108 頁。
吳俊澤,2007:利用MM5 4DVAR 模式同化掩星折射率資料及虛擬渦
漩探討颱風數值模擬之影響。國立中央大學,大氣物理研究所,碩士論文,70 頁。
周昆炫,2003:颱風渦旋初始化之觀測系統模擬實驗研究。國立台灣大學,大氣科學系,博士論文,120 頁。
周鑑本,2006:衛星資料結合變分分析對數值預報之影響。國立中央大學,大氣物理研究所,博士論文,115 頁。
黃清勇、朱延祥,2004:FORMOSAT-3/COSMIC 科學研究簡介。大氣科學,32,293-328。
曾忠一,2006:大氣科學中的反問題。 國立編譯館主編及出版,1288頁。
Anderson, J. L., 2001: An ensemble adjustment kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
Anthes, R. A., C. Rocken, and Y.-H. Kuo, 2000: Applications of COSMIC to meteorology and climate. Terr. Atmos. Oceanic Sci., 11, 115-156.
Barker, D., W. Huang, Y.-R. Guo, and A. Bourgeois, 2003: A
three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Technical Note NCAR/TN-453+STR, 68 pp.
Barker, D., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914.
Chen, S.-H., F. Vandenberghe, and C.-Y. Huang, 2006: Error characteristics of GPS retrieved refractivity using a simulation study. J. Meteor. Soc. Japan, 84, 477-496.
Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo and S. Sokolovskiy, 2008: Typhoon predictions with GPS radio occultation data assimilations by WRF-VAR using local and nonlocal operators. Terr. Atmos. Oceanic Sci., in press.
Cucurull, L., Y.-H. Kuo, D. Barker, and S. R. H. Rizvi, 2006: Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Mon. Wea. Rev., 134, 3283-3296.
Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2007: Assimilation of Global Positioning System radio occultation observations into NCEP’s Global Data Assimilation System. Mon Wea. Rev., 135, 3174-3193.
Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2008: Preliminary impact studies using global positioning system radio occultation profiles at NCEP. Mon. Wea. Rev., 136, 1865-1877.
Cucurull, L. and J.C. Derber, 2008: Operational implementation of COSMIC observations into NCEP’s global data assimilation system. Wea. Forecasting. 23, 702-711.
Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, doi:10.1029/2004GL020806.
Healy, S. B., and J.-N. Thepaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605-623.
Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, doi:10.1002/asi.169.
Hollingsworth, A. and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111–136.
Huang, C.-Y., and Y.-L. Lin, 1997: The evolution of mesoscale vortex impinging on symmetric topography. Proc. Natl. Sci. Counc., 21, 285-309.
Huang, C.-Y., Y.-H. Kuo, S.-H. Chen and F. Vandenberghe, 2005: Improvements on typhoon forecast with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931–953.
Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen and C.-J. Wang 2008: Impact of GPS radio occultation soundings on prediction of Typhoon Bilis (2006) landfalling Taiwan. Terr. Atmos. Oceanic Sci., in press.
Kuo, Y.-H., X. Zou, and W. Huang, 1997: The impact of GPS data on the prediction of an extratropical cyclone: An observing system simulation experiment. J. Dyn. Atmos. Ocean, 27, 413-439.
Kuo, Y.-H., X. Zou, S.-J. Chen, Y.-R. Guo, W. Huang, R. Anthes, D. Hunt, M. Exner, C. Rocken, S. Sokilovskiy, 1998: A GPS/MET sounding through an intense upper-level front, Bull. Amer. Met. Soc., 79, 617-626.
Kuo, Y.-H., S. V. Sokolovskiy, R. A. Anthes, and F. Vandenberghe, 2000: Assimilation of GPS radio occultation data for numerical weather prediction. Terr. Atmos. Oceanic Sci., 11, 157-186.
Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507-531.
Kuo, Y.-H., W. S. Schreiner, J. Wang, D. L. Rossiter, Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes.
Geophys. Res. Lett., 32, L05817, doi:10.1029/2004GL021443.
Kuo, Y.-H., H. Liu, Y.-R. Guo, C.-T. Terng, and Y.-T. Lin, 2008: Impact of FORMOSAT-3/COSMIC Data on Typhoon and Mei-yu Prediction, National Taiwan University (NTU) Department of Atmospheric Sciences 50th Anniversary Book.
Kursinki, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield,
1995:Observing tropospheric water vapor by radio occultation using the global positioning system, Geophs. Res. Letter, 22, 2365-2368.
Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Oceanic Sci., 11, 53-114.
Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073-3093.
Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597-2616.
Liu, H., and X. Zou, 2003: Improvements to GPS radio occultation ray-tracing model and their impacts on assimilation of bending angle. J. Geophys. Res., 108 (D17), 4548, doi: 10.1029/2002JD003160.
Liu, H., J. L. Anderson, Y.-H. Kuo, and K. Raeder, 2007: Importance of forecast error multivariate correlations in idealized assimilation of GPS radio occultation data with the Ensemble Adjustment filter, Mon. Wea. Rev., 135, 173-185.
Liu, H., J. L. Anderson, Y.-H. Kuo, C. Snyder, and A Caya, 2008: Evaluation of a nonlocal quasi-phase observation operator inassimilation of CHAMP radio occultation refractivity with WRF, Mon. Wea. Rev., 136, 242-256.
Leroy, S. S., 1997: Measurement of geopotential height by GPS radio occultation, J. Geophys. Res., 102, 23,429-23,465.
Ma, Z., Y.-H. Kuo, B. Wang, W.-S. Wu, and S. Sokolovskiy, 2008: Comparison of local and non-local observation operators for the assimilation of GPS radio occultation refractivity data in the NCEP GSI system: an observing system simulation experiment. Submitted to Mon Wea. Rev.
Parrish, D. F., and J. C. Derber, 1992: The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120,
1747-1763.
Poli, P. and J. Joiner, 2004: Effects of horizontal gradients on GPS radio occultation observation operators. I: Ray tracing. Q. J. R. Meteorol. Soc., 130, 2787-2805.
Poli, P., 2004: Effects of horizontal gradients on GPS radio occultation observation operators. II: A fast atmospheric refractivity gradient operator (FARGO). Q. J. R. Meteorol. Soc., 130, 2807-2825.
Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, and X. Zou, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102, 29849-29866.
Shapiro, R., 1975: Linear filtering. Math. Comp., 29, 1094-1097.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR technical note NCAR/TN–468+STR, 100 pp.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR technical note NCAR/TN–475+STR, 113 pp.
Smith, E. K., and S. Weintraub, 1953: The constants in the equation of atmospheric refractive indix at radio frequencies. Proc. IRE (Inst. Radio. Eng.), 41, No. 8, 1035-1037.
Sokolovskiy, S., Y.-H. Kuo, and W. Wang, 2005a: Assessing the accuracy of linearized observation operator for assimilation of the Abel-retrieved refractivity: Case simulation with high-resolution weather model. Mon. Wea. Rev., 133, 2200-2212.
Sokolovskiy, S., Y.-H. Kuo, and W. Wang, 2005b: Evaluation of a linear phase observation operator with CHAMP radio occultation data and high-resolution regional analysis. Mon. Wea. Rev., 133, 3053-3059.
Ware, R. et al., 1996: GPS sounding of the atmosphere from low eatth orbit: preliminary results. Bull. Amer. Meteor. Soc., 77, 19-40.
Wee, T.-K., and Y.-H. Kuo, 2005: Assimilation of CHAMP and SAC-C radio occultation data using MM5 4D-VAR. Joint NCAR/MMM CSU/CIRA Data Assimilation Workshop, Sept. 19th 2005, in Boulder, Colorado.
Wu, C.-C., K.-H. Chou, Y. Wang, and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variantional data assimilation. J. Atmos. Sci., 63, 2383-2395.
Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 1157–1176.
Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariance. Mon. Wea. Rev., 130, 2905-2916.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 3772-3788.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of hurricane Andrew (1992). Part IV: Unbalance flows. Mon. Wea. Rev., 129, 92-107.
Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229-2249.
Zou, X., B. Wang, H. Liu, R. A. Anthes, T. Matsumura, and Y.-J. Zhu, 2000: Use of GPS/MET refraction angles in 3D variational analysis. Quart. J. Roy. Meteor. Soc., 126, 3013-3040.
Zou, X., F. Vandenberghe, B. Wang, M. E. Gorbunov, Y.-H. Kuo, S. Sokolovskiy, J. C. Chang, J. G. Sela, and R. Anthes, 1999: A raytracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res., 104, 22301-22318.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2008-11-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明