博碩士論文 92642002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.229.118.253
姓名 黃明偉(Ming-Wey Huang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 使用強地動紀錄估算1999年集集大地震餘震之輻射能量與地震力矩
(Estimates of Seismic Radiated Energies and Seismic Moments of the Aftershocks of 1999 Chi-Chi Taiwan, Earthquake Using Strong-Motion Data)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地震波輻射能量(Es)與地震力矩(Mo)為地震的兩個重要參數,尺度能量(Scaled Energy)之定義為Es/Mo,其表示為單位地震力矩所釋放之輻射能量。許多因素為影響所使用近場、區域與遠場之地震記錄所估算Es和Mo,進而造成Es/Mo產生很大差異。強烈的場址效應會造成地震訊號在高頻段有振幅放大進而導致高估了震源參數;有限頻段的地震訊號則會低估了震源參數。
使用quarter wavelength approximation的方法來計算位於台灣中部地區之87個強震站場址的放大效應,根據地表下30公尺深的井測結果與由地震波研究所推求的三維速度構造,來重新建立新的速度與密度模型,進而來計算87個場址的振幅放大倍率。
另外,假設震源之頻譜為w-squared衰減模型,對於有限頻寬地震訊號在估算Es、Mo和Es/Mo的影響也進行理論研究,以減低在有限頻寬估算地震源參數所造成的影響。
本研究使用中央氣象局之近斷層強地動紀錄來估算1999年集集大地震22個餘震之Es,Mo和fc,其中fc為拐角頻率,其區域規模為5.1£ML£6.8。利用Andrew(1986)速度與位移地震記錄平方後之積分方法,以所得到的數值來計算Es,Mo和fc;消除影響估算震源參數的因子,如輻射型態、自由表面放大效應、衰減因子、場址效應以及有限頻寬限制。所估算的結果為Es=2.0´1018 – 8.9´1021 ergs 和 Mo=1.3´1023 – 1.4´1026 dyne-cm,Es/Mo=7.4´10-6 – 2.6´10-4,其平均值為 ~7.9´10-5。本研究所估算的Es/Mo對於地震規模大小呈現些許的正相關性。在地震力矩與拐角頻率之關係為Mo~fc-3.65。另外,尺度能量與震源深度有些許的正相關,其關係為Es/Mo=1.92´10-5e0.09h,其中h為震源深度。
摘要(英) The seismic radiated energy, Es, and seismic moment, Mo, are two fundamental parameters of an earthquake. The scaled energy, Es/Mo, is defined to be the ratio of seismic radiated energy to seismic moment, denotes the radiated energy per unit seismic moment of an earthquake. Several factors could affect the measures of Es and Mo from local, regional, and teleseismic data, thus, resulting in high divergence of Es/Mo. The strong site effect, especially at higher frequencies, can produce an over-estimates of source parameters; while finite frequency bandwidth limitation leads to an opposite effect.
Based on the quarter-wavelength approximation method proposed by Boore and Joyner (1997), the site amplifications at 87 strong-motion stations in central Taiwan are evaluated from the velocity and density structures constructed from well-logging data in the topmost 30-m and 3D velocity models inferred from earthquake data.
In addition, the formulas used to eliminate the effects on Es, Mo, and Es/Mo caused by finite frequency bandwidth limitation based on the w-squared source model are presented.
In this study, we measure the values of Es and Mo for 22 aftershocks with 5.1£ML£6.8 of the 1999, Chi-Chi, Taiwan earthquake based on the local seismograms from the Central Weather Bureau. The method proposed by Andrew (1986) is used. After the corrections, i.e., the radiation pattern, free surface amplification, Q-factor, the site effects, and finite frequency bandwidth limitations, the results are Es=2.0´1018 – 8.9´1021 ergs and Mo=1.3´1023 – 1.4´1026 dyne-cm. This gives Es/Mo=7.4´10-6 – 2.6´10-4, with an average of ~7.9´10-5. Es/Mo slightly increase with earthquake magnitude. The Mo – fc scaling almost has the following relation: Mo~fc-3.65. In addition, Es/Mo slightly depends on the depth in the following form: Es/Mo=1.92´10-5e0.09h, where h is focal depth.
關鍵字(中) ★ 場址效應
★ 地震力矩
★ 集集大地震餘震
★ 輻射能量
關鍵字(英) ★ Aftershocks of Chi-Chi mainshock
★ Radiated Energy
★ and Seismic Moment
★ Site effect
論文目次 Contents
Chinese Abstract i
English Abstract ii
Acknowledgement iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation of this Study 2
1.2 Outline of this Dissertation 3
Chapter 2 Geological Setting and Data 6
2.1 Geological Setting 6
2.2 Data Collection 7
Chapter 3 Frequency-dependent Site Effect 22
3.1 Introduction 22
3.2 High Frequency Site Amplification Function 23
3.2.1 Well-loggings in the Topmost 30 m 23
3.2.2 Method 24
3.2.3 Borehole Data 25
3.2.4 Amplification evaluated from Borehole Data 27
3.3 Site Amplification Function for f>0.01 Hz 29
3.3.1 Velocity Models Inferred from Earthquake Data 29
3.3.2 Construction of Velocity and Density Models 31
3.3.3 Evaluations of the Site Amplifications 33
3.4 Discussion 35
Chapter 4 Finite Frequency Bandwidth Limitation 61
4.1 Method of Measuring Es and Mo 61
4.2 Finite Frequency Bandwidth Limitation 63
4.3 Discussion 65
Chapter 5 Estimates of Source Parameters 73
5.1 Data Processing 73
5.2 Two Corrections 75
5.2.1 Site Effect Correction 75
5.2.2 Finite Frequency Bandwidth Limitation Correction 76
5.2.3 Differences Caused by Corrections 76
5.3 Measurements and Results 78
5.4 Discussion 80
Chapter 6 Conclusions 98
References 101
Appendices
A The amplification versus frequency for the 87 stations evaluated from well-logging data of topmost 30 m. 109
B The velocity model is constructed for the 87 stations from well-logging data and the seismic velocity models. 118
C The amplification functions for the 87 stations with f>0.01 Hz. 127
D Introduction and Conclusions in Chinese 136
參考文獻 Aki, K., 1966. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Part 2: Estimation of earthquake moment, from G wave spectrum, Bull. Earthquake Res. Inst. Tokyo Univ., 44, 73-88.
Aki, K. and P. G. Richards, 1980. Quantitative Seismology, W. H. Freeman and Co., San Francisco, California.
Atkinson, G. M. and J. F. Cassidy, 2000. Integrated use of seismograph and strong- motion data to determine soil amplification: response of the Fraser River Delta to the Duvall and Georgia Strait earthquake, Bull. Seism. Soc. Am., 90, 1028-1040.
Anderson, J. and S. Hough, 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seism. Soc. Am., 74, 1969-1993.
Andrews, D. J., 1986. Objective determination of source parameters and similarity of earthquakes of different size, in Earthquake Source Mechanics, edited by S. Das, J. Boatwright and C.H. Scholz, AGU, Washington D.C., pp259-267.
Barrier, E., 1986. The double collision of Taiwan: an active orogeny, Tectonophysics, 125, 39-72.
Boatwright, J., G. L. Choy, and L. C. Seekins, 2002. Regional estimates of radiated seismic energy, Bull. Seism. Soc. Am., 92(4), 1241-1255.
Bolt, B. A., 1986. Seismic Energy release over a broad frequency band, Pure Appl. Geophys., 124, 919-930.
Boore, D. M., 1988. The effect of finite bandwidth on seismic scaling relationships, in Earthquake Source Mechanics, AGU Geophys. Mono. 27, edited by C.H. Scholz, pp275-283, AGU, Washington, D.C.
Boore, D. M. and J. Boatwright, 1984. Average body-wave radiation coefficients, Bull. Seism. Soc. Am., 74 (5), 1615-1621.
Boore, D. M. and W. B. Joyner, 1997. Site amplifications for generic rock sites, Bull. Seism. Soc. Am., 87, 327-341.
Brodsky, E. E. and H. Kanamori, 2001. Elastohydrodynamic lubrication of faults, J. Geophys. Res.,106(B8), 16357-16374.
Brune, J. N., 1970. Tectonic stress and the spectra of seismic shear wave from earthquakes, J. Geophys. Res., 75, 4997-5009.
Campillo, M., 1983. Numerical evaluation of near-field, high-frequency radiation from quasi-dynamic circular faults, Bull. Seism. Soc. Am., 73, 3, pp. 723-734.
CBW. Seismological Bulletin, July to September 2003, 50(3), Central Weather Bureau, 141pp, 2003.
Chen, C.-H., W.-H. Wang, and T.-L. Teng, 2001. 3D velocity structure around the source area of the 1999 Chi-Chi, Taiwan, earthquake: before and after the mainshock, Bull. Seism. Soc. Am., 91, 5, pp. 1013-1027.
Chi, W.-R., J. Namson, and J. Suppe, 1981. Stratigraphic record of plate interactions in the coastal Range of eastern Taiwan, Mem. Geol. Soc. China, 4, 155-194.
Choy, G. L., and J. L. Boatwright, 1995. Global patterns of radiated seismic energy and apparent stress, J. Geophys. Res., 100, 18205-18228.
Chinese Petroleum Corporation, 1982. The geological map of Miali, Taichung and Chiayi, Taiwan Petrol. Explor. Div. Publ., CPC, Taiwan, scale 1:100,000.
Day, S. M., 1996. RMS response of a one-dimensional half space to SH, Bull. Seism. Soc. Am., 86, 363-370.
Di Bona, M. and A. Rovelli, 1988. Effects of the bandwidth limitation on stress drops estimated from integrals of the ground motions, Bull. Seism. Soc. Am., 78, 1818-1825.
Frankel, A., 1995. Simulating strong motions of large earthquakes using recordings of small earthquakes: the Loma Prieta mainshock as a test case, Bull. Seism. Soc. Am., 85, 4, pp. 1144-1160.
Gutenberg, B. and C. F. Richter, 1956. Magnitude and energy of earthquake, Ann. Geofisica, 9, 1-15.
Hanks, T., 1982. fmax, Bull. Seism. Soc. Am., 72, pp. 1867-1879.
Ho, C.-S., 1986. A synthesis of the geologic evolution of Taiwan. Techonophysics, 125, 1-16.
Huang, M.-W., J.-H. Wang, R.-D. Hwang, and K.-C. Chen, 2002. Estimates of source parameters of two large aftershocks of the 1999 Chi-Chi, Taiwan, earthquake in Chia-Yi area, Terr. Atmo. Ocean, Vol. 13, No. 3, 299-312.
Huang, M.-W., J.-H. Wang, H.-H. Hsieh, K.-L. Wen, and K.-F. Ma, 2005. Frequency-dependent sites amplifications evaluated from well-logging data in central Taiwan, Geophys. Res. Lett., 32, L21302, doi:10.1029/2005GL023527.
Hung, J.-H., Y.-H. Wu, and E.-C. Yeh, 2005. Deformation and physical properties in the well of Taiwan Chelungpu fault drilling project, Takeng, west-central Taiwan, Asia Oceania Geosciences Society 2nd Annual Meeting, pp. 148
Hwang, R.-D., J.-H. Wang, B.-S. Huang, K.-C. Chen, W.-G. Huang, T.-M. Chang, H.-C. Chiu, and C.-C. Tsai, 2001. Estimates of stress drop of the Chi-Chi, Taiwan, earthquake of 20 September 1999 from near-field seismograms, Bull. Seism. Soc. Am., 91, 1158-1166.
Ide, S. and G. C. Beroza, 2001. Does apparent stress vary with earthquake size? Geophys. Res. Lett., 28, 3349-3352.
Joyner, W. B., R. E. Warrick, and T. E. Fumal, 1981. The effect of Quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979, Bull. Seism. Soc. Am., 71, 1333-1349.
Kanamori, H., 1977. The energy release in great earthquakes, J. Geophys. Res., 82(20), 2981-2987.
Kanamori, H., and T. H. Heaton, 2000. Microscopic and macroscopic physics of earthquakes, in Geocomplexity and the Physics of Earthquakes, AGU Geophys. Mono. 120, edited by L.B. Rundle, D.L. Turcotte, and W. Klein, AGU, Washington, D.C., pp147-164.
Kanamori, H. and L. Rivera, 2004. Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop, Bull. Seism. Soc. Am., 94(1), 314-319.
Kao, H., Y.-H. Liu, W.-T. Liang, and W.-P Chen, 2002. Source parameters of regional earthquakes in Taiwan: 1999-2000 including the Ch-Chi earthquake sequence, Terr. Atmo. Ocean, 13( 3), 279-298.
Kikuchi, M. and Y. Fukao, 1988. Seismic wave energy inferred from long-period body wave inversion, Bull. Seism. Soc. Am., 78, 1707-1724.
Kinoshita, S. and M. Ohike, 2002. Scaling relations of earthquakes that occurred in the upper part of the Philippine Sea plate beneath the Kanto region, Japan, estimated by means of borehole recordings, Bull. Seism. Soc. Am., 92, 611-624.
Klimis, N. S., B. N. Margaris, and P. K. Koliopoulos, 1999. Site-dependent amplification functions and response spectra in Greece. J. Earthquake Engin., 3( 2), 237-270.
Lay, T. and T. C. Wallace, 1995. Modern Global Seismoglogy, A Division of Harcourt Brace & Company, San Diego, 512 pp.
Lee C.-T., C.-T. Cheng, C.-W. Liao, and Y.-B. Tsai, 2001. Site classification of Taiwan free-field strong-motion stations, Bull. Seism. Soc. Am., 91, 1283-1297.
Lermo, J. and F. J. Chávez-García, 1993. Site effect evaluation using spectral ratios with only one station, Bull. Seism. Soc. Am., 83, 1574-1594.
Lin, C.-H., 2001. The 1999 Taiwan earthquake: A proposed stress-focusing, heel-shaped model, Bull. Seism. Soc. Am., 91, 5, pp. 1574-1594.
Liu, K.-S., T.-C. Shin and Y.-B. Tsai, 1999. A free-field strong motion network in Taiwan: TSMIP, Terr. Atmo. Ocean, 10, 337-396.
Ma, K.-F., C.-T. Lee, Y.-B. Tsai, T.-C. Shin and J. Mori, 1999. The Chi-Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault, Eos, Transaction, AGU, 80, 605-611.
Ma, K.-F., J.-H. Wang, and D. Zhao, 1996. Three-dimensional seismic velocity structure of the crust and uppmost mantle beneath Taiwan, J. Phys. Earth., 44, 85-105.
Malagnini, L. K., Mayeda, A. Akinci, P. L. Bragato, 2004. Estimating Absolute Site Effects, Bull. Seism. Soc. Am. 94, 576-590.
McGarr, A., 1999. On relating apparent stress to the stress causing earthquake fault slip, J. Geophys. Res., 104(B2), 3003-3011.
Papageousgious, AS., 1988. On two characteristic frequencies of acceleration spectra: patch corner frequency and fmax, Bull. Seism. Soc. Am., 78, 2, pp. 509-529.
Pérez-Campos, X., S. K. Singh, and G. C. Beroza, 2003. Reconciling teleseismic and regional estimates of seismic energy, Bull. Seism. Soc. Am., 93, 2123-2130.
Rau, R.-J., F.-T. Wu and T.-C. Shin, 1996. Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio, Bull. Seism. Soc. Am., 86, 1270-1283.
Satoh, T., H. Kawase, T. Iwata, S. Higashi, T. Sato, K. Irikura, and H.-C. Huang, 2001. S-wave velocity structure of the Taichung basin, Taiwan, estimated from array and single-station records of microtremors, Bull. Seism. Soc. Am., 91, 5, pp. 1267-1282.
Savage, J. C., and M. D. Wood, 1973. The relation between apparent stress and stress drop, Bull. Seism. Soc. Am., 61, 1381-1388.
Shieh, C.-F., 1992. Estimation of Q value by SP/S spectral ratio, Terr. Atmo. Ocean, Vol. 3, No. 4, 469-482.
Shin, T.-C., K.-W. Kuo, W. H. K. Lee, T.-L. Teng and Y.-B. Tsai, 2000. A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake, Seism. Res. Lett., 71, 24-30.
Shin, T.-C., 1993. Progress summary of the Taiwan strong motion instrumentation program, Symposium on Taiwan Strong Motion Program, 1-10.
Singh, S.K. and M. Ordaz, 1994. Seismic energy release in Mexican subduction zone earthquakes, Bull. Seism. Soc. Am., 84, 1533-1550.
Smith, K.D., J.N. Brune and K.F. Priestley, 1991. The seismic spectrum, radiated energy, and Savage and Wood inequality for complex earthquakes, Tectonophys., 188, 303-320.
Sokolov, V. Yu., C.-H. Loh, and K.-L. Wen, 2002. Comparison of the Taiwan Chi-Chi earthquake strong motion data and ground motion assessment based on spectral model from smaller earthquakes in Taiwan. Bull. Seism. Soc. Am., 92, 1855-1877.
Sokolov, V. Yu., C.-H. Loh, and K.-L. Wen, 2004. Evaluation of generalized site response functions for typical soil classes (B, C, and D) in Taiwan. Earthquake Spectra, 20, 1279-1316.
Suppe, J., 1980. Imbricated structure of western foothills belt, south-central Taiwan, Petro. Geol. Taiwan, 17, 1-16.
Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89.
Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-34.
Suppe, J., 1985. Principle of structural geology, Prentice-Hall, Englewood Cliffs, 537pp.
Tanaka, H., C.-Y. Wang, W.-M. Chen, A. Sakaguchi, K. Ujiie, H. Ito, and M. Ando, 2002. Initial science report of shallow drilling penetrating into the Chelungpu Fault zone, Taiwan, Terr. Atmos. Ocean. Sci., 13, 227-251.
Teng, L.-S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysic, 183, 57-76.
Vassiliou, M. S. and H. Kanamori, 1982. The energy release in earthquakes, Bull. Seism. Soc. Am., 72, 371-387.
Wang, C.-Y., C.-H. Chang, and H.-Y. Yen, 2000. An Interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model, Terr. Atmos. Ocean. Sci., Vol. 11, No. 3, 609-630.
Wang, J.-H., 1993. Q values of Taiwan: A review, J. Geol. Soc. China, 36, 15-24.
Wang, J.-H., 1998. Studies of earthquakes seismology in Taiwan during the 1897-1996 period, J. Geol. Soc. China, 41, 291-336.
Wang, J.-H., 2004. The seismic efficiency of the 1999 Ms7.6 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 31, L10613, doi:10.1029/204GL019417.
Wang, J.-H., Y.-B. Tsai, and C.-C. Liu, 1989. Local magnitude determined from a simulated Wood-Anderson seismograph, Tectonophys., 166, 15-26.
Wu, F.-T., R.-J. Rau, and D. Salzberg, 1997. Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophys., 274, 191-220.
Wyss, M. and J. N. Brune, 1968. Seismic moment, stress, and source dimensions for earthquakes in California-Nevada regions. J. Geophsy. Res., 73, 4681-4694.
Yu, S.-B., H.-Y. Chen, and L.-C. Kuo, 1997. Velocity field of GPS stations in the Taiwan area, Tectonophys., 274, 41-59.
Zhang, F., 2004. Site response and attenuation analysis using strong motion and short-period data, Ph.D. Dissertation, Dept. Civil Struct. Environ. Eng., SUNY-Buffalo, 278 pp.
指導教授 王錦華(Jeen-Hwa Wang) 審核日期 2006-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明