博碩士論文 92642005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.221.85.33
姓名 黃有志(Yu-chih Huang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣地區多尺度震波背景雜訊研究
(Multi-scale ambient seismic noise study in the Taiwan region)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 台灣西南部地區地震釋放之能量與規模關係之研究
★ 高屏地區場址效應之探討★ 以地震儀陣列及基因演算法推估近地表剪力波波速
★ 臺灣中部地區強地動波形模擬★ 利用接收函數法推估蘭陽平原淺層速度構造
★ 蘭陽平原場址效應及淺層S波速度構造★ 探討不同地質區強震站之淺層S波速度構造
★ 震源破裂過程及地表強地動特性之陣列分析研究★ 利用微地動探討桃竹苗地區之場址效應
★ 利用微地動量測探討台灣中部地區之場址效應★ 利用接收函數法分析台灣深部地殼構造
★ 1999年集集大地震前後地震活動、震源機制及地殼應力分佈與變化之研究★ 利用有限斷層法探討台北盆地之場址效應
★ 利用微地動量測探討台北盆地之場址效應★ 以恆春地震探討高屏地區之場址效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近5年來,分析震波背景雜訊得到時間域經驗格林函數和表面波頻散曲線,再利用層析成像了解淺部地殼到上部地函的S波速度構造,是熱門研究探討的主題之一,研究區域遍及世界五大洲。本論文的研究目的是想藉由此研究方法,來了解台北盆地淺部地殼,及台灣海峽和台灣地區地殼到上部地函的雷利波相速度高低分佈。
台北都會區人口密集度高,地震活動度低,所以不適合利用主動式震源震測探勘,或是被動式地震觀測來了解地震波速度構造。在大都會區,可以透過時間域經驗格林函數克服以上兩種方法的缺點,得到較高解析力的淺部地殼三維地震波速度構造。研究結果發現,台北盆地0.5~5秒的震波背景雜訊來源來自西北方,是海浪在最近的海岸及台灣海峽近岸淺海大陸棚的交互作用所造成。統整台北盆地0.5~3秒雷利波相速度分佈圖,可以發現相速度高低分佈和地表地質有很好的相關性,同時斷層也扮演了一個很重要的角色。高速區主要位於比較堅硬的第四紀火山岩,還有台北斷層以南比較古老的第三紀中新世西部麓山帶。低速區則主要位於第四紀更新世林口台地,及沿著台北盆地西邊的金山和山腳斷層,與東南邊的台北斷層北緣分佈,分別屬於鬆散未固結的紅土礫石層和沖積層。
台灣地區的地體構造模型有許多不同見解,先前研究都集中在台灣本島,又以分析體波訊號為主。本論文在台灣地區的研究區域同時包含台灣海峽、台灣本島和東部海域,並且結合分析震波背景雜訊和遠震的雷利波訊號,得到5~120秒的雷利波相速度分佈圖。在5~12秒,高速區在遠離板塊碰撞帶的中國大陸沿海,和台灣本島的中央山脈中段和海岸山脈。低速區則主要在台灣本島西南部海域,和台灣本島的西部平原和西部麓山帶。在13~15秒,台灣本島整個變成低速區,介於台灣海峽及東部海域的高速區之間。在16~19秒,台灣本島主要還是一個低速區,整體低速區的形狀類似「薩克斯風」,從台灣本島西南部海域,沿著台灣本島軸部向北,再沿琉球島弧往東延伸,介於台灣海峽及東部海域的高速區之間。在20~24秒,台灣本島的高低速分佈和短週期5~12秒大致相反,中央山脈是低速區,西部平原和西部麓山帶是高速區。在25~28秒,台灣海峽的低速區範圍變大,西部平原和西部麓山帶的高速區在台灣本島中部被低速區分隔開來,變成高速區集中在北港高區和觀音高區。在29~50秒,台灣本島中部附近為高速區,被周圍低速區所包圍,但高低速差從0.3公里/秒減少至0.1公里/秒,顯示隨著週期越來越長,台灣地區速度側向變化越來越小,這也代表著整個台灣地區的上部地函逐漸趨向一維速度構造。在60~120秒,大致上台灣海峽是低速區,台灣本島及其以東是高速區。
雖然台灣海峽的地體構造和地震活動度並沒有台灣本島複雜且活躍,但是除了受到板塊聚合的擠壓之外,同時也受到南中國海的板塊擴張影響。台灣海峽的研究除了比陸上的研究更加困難之外,過去兩岸學者通常只是利用各自擁有的資料分開研究,比較少機會可以結合兩岸資料一起分析。目前台灣海峽尚缺乏詳細的地殼及上部地函速度與地體構造,而時間域經驗格林函數又適合應用在地震活動度低的地方來了解底下構造。之前有關於時間域經驗格林函數的研究主要都是在陸上,只有非常少數研究是在海上。台灣海峽的研究,結合了台灣地區及中國大陸福建省共50個寬頻地震站。資料分析時發現,中國大陸福建省寬頻地震站的連續紀錄似乎存在著不少問題,在篩選資料的時候需要特別留意。在比對過兩個地震網路徑相似的測站對後,發現雷利波相速度頻散曲線彼此相似。因此確保結合台灣和中國這兩個寬頻地震觀測網的資料,一起分析是可行的。初步歸納5~30秒的雷利波相速度頻散曲線比對結果,發現中國大陸沿海和台灣海峽南部的相速度比較高,而台灣海峽的中部和北部則是相速度比較低。
摘要(英) Over the past 5 years, it has been demonstrated that the Time Domain Empirical Green’s Function (TDEGF) from ambient seismic noise cross-correlation can be used to investigate crustal and uppermost mantle velocity structure from many studies around the world. To decipher subsurface structures in various scales, researchers can utilize some existing continuous-recording seismic stations and/or deploy a new dense receiver array in the study region. In this thesis, we perform tomographic applications of ambient seismic noise analysis in the Taipei Basin, Taiwan Strait, and Taiwan Region for three arrays with very different scales.
The Taipei Basin is a high-level artificial noise metropolis and requires detailed shallow crustal structure. The high levels of ambient seismic noise and the low levels of regional seismicity of this region complicate investigations of crustal structure with traditional seismic exploration or earthquake tomography methods. Analysis of the TDEGF amplitudes suggests that the dominant sources of ambient seismic noise are generated from the coastlines and shallow continental shelf of the Taiwan Strait, northwest of the study region. The ambient seismic noise tomography is feasible at periods 0.5-3 s, which is much shorter than most other studies. The lateral variation in Rayleigh wave phase velocities correlates well with surface geology and suggest that faults play an important role in the regional tectonic setting. High phase velocities mark the Tatun volcanic area, the Kuanyin Mountain dominated by Quaternary igneous rock, and the Miocene Western Foothills south of the Taipei Fault. Low phase velocities are along western and southeastern edges of the Taipei basin and the Pleistocene Linkou Tableland. Main faults in the region are either marked by low phase velocities or define transitions between regions of high and low velocity anomalies.
The Taiwan Region is located at a complex convergent plate boundary zone where the Philippine Sea plate interacts with the Eurasian plate. As a result, the lateral velocity variations show dramatic patterns among different geologic provinces. Rather than only focusing on the Taiwan Island as most previous studies, this thesis includes broader regions also with the Taiwan Strait and the eastern sea area. The 5-120 s phase velocity maps are constructed from analysis of ambient seismic noise and teleseismic Rayleigh waves. At 5-12 s, phase velocity distribution can compare well with surface geology. At 16-19 s, there is a saxophone shape low velocity zone beneath the Taiwan Island. At 20-24 s, phase velocity patterns beneath the Taiwan Island are almost contrary to 5-12 s. At 30-50 s, the Taiwan Island is a high velocity zone surrounded by low velocity zone. At 60-120 s, the Taiwan Strait shows low velocity and east of it shows high velocity.
The Taiwan Strait is located on the passive margin of collision zone and is also adjacent to South China Sea opening to the southwest. Despite that in the Taiwan Strait the tectonic structure is assumed relatively simple and seismicity is much lower than the Taiwan Island, intraplate earthquakes sometimes occurred but the mechanisms are not well constrained. Limited studies have focused on this region before and most previous ambient seismic noise studies focused on continental regions rather than across a strait. The data are from 50 broadband stations on both sides of the Taiwan Strait, in mainland China and the Taiwan region. The preliminary 5-30 s Rayleigh wave phase velocity dispersion curves show high velocities along mainland China coastlines and southern part of the Taiwan Strait while low velocities appear in the central and northern parts of the Taiwan Strait.
關鍵字(中) ★ 層析成像
★ 震波背景雜訊
★ 台灣地區
關鍵字(英) ★ ambient seismic noise
★ tomography
★ Taiwan region
論文目次 作者簡介 I
中文提要 VI
英文提要 VIII
序言 X
誌謝 XI
目錄 XII
圖目 XVII
表目 XXIV
第一章 緒論 1
1.1 研究方法簡介 1
1.2 研究動機與目的 2
1.3 論文內容簡介 4
第二章 研究方法 7
2.1 時間域經驗格林函數 7
2.1.1 基本觀念 7
2.1.2 理論基礎 8
2.1.3 優點 11
2.1.4 缺點 14
2.1.5 方法驗證 17
2.1.6 方法應用 18
2.2 單一位元交對比 21
2.3 表面波雙站法 23
2.4 層析成像 24
2.5 棋盤格解析度測試 25
第三章 台北盆地 35
3.1 區域地質 35
3.2 文獻回顧與研究動機 37
3.3 研究資料與處理流程 39
3.4 研究結果 41
3.4.1 震波背景雜訊來源方向 41
3.4.2 雷利波相速度頻散曲線 42
3.4.3 波線分佈與棋盤格解析度測試 43
3.4.4 雷利波相速度分佈圖 44
3.5 比較討論 46
3.6 未來展望 49
第四章 台灣地區 69
4.1 文獻回顧與研究動機 69
4.1.1 地體架構 69
4.1.2 速度構造 70
4.1.3 研究動機 72
4.2 研究資料與處理流程 72
4.2.1 時間域經驗格林函數 72
4.2.2 表面波雙站法 75
4.3 研究結果 76
4.3.1 時間域經驗格林函數 76
4.3.1.1 雷利波相速度頻散曲線 77
4.3.1.2 波線分佈與棋盤格解析度測試 78
4.3.1.3 雷利波相速度分佈圖 79
4.3.2 表面波雙站法 81
4.3.2.1 雷利波相速度頻散曲線 81
4.3.2.2 波線分佈與棋盤格解析度測試 83
4.3.2.3 雷利波相速度分佈圖 84
4.3.3時間域經驗格林函數結合表面波雙站法 85
4.3.3.1 雷利波相速度頻散曲線 85
4.3.3.2 波線分佈與棋盤格解析度測試 87
4.3.3.3 雷利波相速度分佈圖 88
4.4 比較討論 90
4.5 未來展望 91
第五章 台灣海峽 123
5.1 文獻回顧與研究動機 123
5.1.1 地體架構與文獻回顧 123
5.1.2 研究動機 125
5.2 研究資料與處理流程 125
5.2.1 研究資料 125
5.2.2 資料處理流程 126
5.2.3 初步資料分析 128
5.2.4 中國大陸的資料問題 128
5.3 初步研究結果 130
5.3.1 時間域經驗格林函數 130
5.3.1.1 路徑相近的測站對比較 130
5.3.1.2 所有測站對依照距離遠近排列 131
5.3.2 雷利波相速度頻散曲線 131
5.4 未來展望 132
第六章 結果與討論 153
6.1 研究結果與統整 153
6.1.1 研究方法 153
6.1.2 台北盆地 154
6.1.3 台灣地區 155
6.1.4 台灣海峽 157
6.2 比較討論 158
6.3 未來展望 160
參考文獻 162
附錄 179
附錄A-台北盆地時間域經驗格林函數在0.5~3秒的波線分佈圖 179
附錄B-台北盆地時間域經驗格林函數在0.5~3秒的棋盤格解析度測試結果 185
附錄C-台北盆地時間域經驗格林函數在0.5~3秒的雷利波相速度分佈圖 191
附錄D-台灣地區時間域經驗格林函數在5~30秒的波線分佈圖 197
附錄E-台灣地區時間域經驗格林函數在5~30秒的棋盤格解析度測試結果 203
附錄F-台灣地區時間域經驗格林函數在5~30秒的雷利波相速度分佈圖 209
附錄G-台灣地區表面波雙站法在10~120秒之中12個週期的波線分佈圖 215
附錄H-台灣地區表面波雙站法在10~120秒之中12個週期的棋盤格解析度測試結果 218
附錄I-台灣地區表面波雙站法在10~120秒之中12個週期的雷利波相速度分佈圖 221
附錄J-台灣地區時間域經驗格林函數結合表面波雙站法在5~30秒的波線分佈圖 224
附錄K-台灣地區時間域經驗格林函數結合表面波雙站法在5~30秒的棋盤格解析度測試結果 230
附錄L-台灣地區時間域經驗格林函數結合表面波雙站法在5~30秒的雷利波相速度分佈圖 236
附錄M-台北盆地時間域經驗格林函數研究發表的文章 242
參考文獻 Angelier, J., Geodynamics of the Eurasia-Philippine Sea Plate boundary: Preface, Tectonophys., 125, IX-X, 1986.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., and Yang, Y., Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x, 2007.
Bensen, G. D., Ritzwoller, M. H., and Shapiro, N. M., Broadband ambient noise surface wave tomography across the United States, J. Geophys. Res., 113, B05306, doi:10.1029/2007JB005248, 2008.
Bensen, G. D., Ritzwoller, M. H., and Yang, Y., A 3-D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise, Geophys. J. Int., 177, 1177-1196, 2009.
Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A., and Ferrazzini V., 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations, Geophys. Res. Lett., 34, L02305, doi:10.1029/2006GL028586, 2007.
Bromirski, P. D, Vibrations from the “Perfect Storm”, Geochem. Geophys. Geosyst., 2, 1030, doi:10.1029/2000GC000119, 2001.
Campillo, M., and Paul, A., Long-range correlations in the diffuse seismic coda, Science, 299, 547-549, doi:10.1126/science.1078551, 2003.
Chen, C. H., Chen, Y. H., Yen, H. Y., and Yu, G. K., Lateral variations of Pn velocity and anisotropy in Taiwan from travel-time tomography, Earth Planets Space, 55, 223-230, 2003.
Chen, C. S., Chen, C. C., Chiang, C. W., Shu, H. L., Chiu, W. H., Unsworth, M. J., and Bertrand, E., Crustal resistivity anomalies beneath central Taiwan imaged by a broadband magnetotelluric transect, Terr. Atmos. Ocean. Sci., 18, 19-30, 2007.
Chen, J. H., Froment, B., Liu, Q. Y., and Campillo, M., Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake, Geophys. Res. Lett., 37, L18302, doi: 10.1029/2010GL044582, 2010.
Chen, K. C., Strong ground motion and damage in the Taipei basin from the Moho reflected seismic waves during the March 31, 2002, Hualien, Taiwan earthquake, Geophys. Res. Lett., 30(11), 1551, doi: 10.1029/2003GL017193, 2003.
Chiang, C. W., Chen, C. C., Unsworth, M., Bertrand, E., Chen, C. S., Kieu, T. D., and Hsu, H. L., The deep electrical structure of southern Taiwan and its tectonic implications, Terr. Atmos. Ocean. Sci., 21, 879-895, doi:10.3319/TAO.2010.02.25.01(T), 2010.
Cho, K. H., Herrmann, R. B., Ammon, C. J., and Lee, K., Imaging the upper crust of the Korean Peninsula by surface-wave tomography, Bull. Seismol. Soc. Am., 97, 198-207, doi:10.1785/0120060096, 2007.
Chung, J. K., and Shin, T. C., Surface-wave analysis in the Taipei Basin from strong-motion data, Terr. Atmos. Ocean. Sci., 10, 633-650, 1999.
Chung, J. K., and Yeh Y. T., Shallow crustal structure from short-period Rayleigh-wave dispersion data in southwestern Taiwan, Bull. Seismol. Soc. Am., 87, 370-382, 1997.
Cupillard, P., and Capdeville, Y., On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: a numerical approach, Geophys. J. Int., 181, 1687-1700, doi:10.1111/j.1365-246X.2010.04586.x, 2010.
Dahlen, F. A., and Tromp, J., Theoretical global seismology, Princeton Univ. Press, Princeton, New Jersey, 1998.
Derode, A., Larose, E., Campillo, M., and Fink, M., How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves, Appl. Phys. Lett., 83, 3054- 3056, 2003.
Fletcher, J. B., and Wen, K. L., Strong ground motion in the Taipei Basin from the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 95, 1428-1446, doi:10.1785/0120040022, 2005.
Gerstoft, P., Fehler, M. C., and Sabra, K. G., When Katrina hit California, Geophys. Res. Lett., 33, L17308, doi:10.1029/2006GL027270, 2006a.
Gerstoft, P., Sabra, K. G., Roux, P., Kuperman, W. A., and Fehler, M. C., Green’s functions extraction and surface-wave tomography from microseisms in southern California, Geophysics, 71, S123-S131, doi: 10.1190/1.2210607, 2006b.
Goldstein, P., Dodge, D., Firpo, M., and Minner, L., SAC2000: Signal processing and analysis tools for seismologists and engineers, invited contribution to The IASPEI international handbook of earthquake and engineering seismology, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings and C. Kisslinger, Academic Press, London.,1613-1614, 2003.
Harmon, N., Forsyth, D., and Webb, S., Using ambient seismic noise to determine short-period phase velocities and shallow shear velocities in young oceanic lithosphere, Bull. Seismol. Soc. Am., 97, 2009-2023, doi:10.1785/0120070050, 2007.
Hsieh, H. H., Yen, H. Y., and Shih, M. H., Moho depth derived from gravity data in the Taiwan Strait area, Terr. Atmos. Ocean. Sci., 21, 235-241, doi:10.3319/TAO.2009.03.05.01(T), 2010.
Hsu, S. K., and Sibuet, J. C., Is Taiwan the result of arc-continent or arc-arc collision?, Earth Planet. Sci. Lett., 136, 315-324, 1995.
Hsu, S. K., Yeh, Y. C., Lo, C. L., Lin, A. T., and Doo, W. B., Link between crustal magnetization and earthquakes in Taiwan, Terr. Atmos. Ocean. Sci., 19, 445-450, doi:10.3319/TAO.2008.19.5. 445(T), 2008.
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., and Chen, H. Y., Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophys., 479, 4-18, 2009.
Huang, B. S., Chen, K. C., Wang, K. L., and Yen, H. Y., Velocities of Pn-waves in the Taiwan Strait and its surrounding area from regional earthquakes, Terr. Atmos. Ocean. Sci., 9, 473-486, 1998.
Huang, B. S., Chen, K. C., Yen, H. Y., and Yao, Z. X., Re-examination of the epicenter of the 16 September 1994 Taiwan Strait earthquake using the beam-forming method, Terr. Atmos. Ocean. Sci., 10, 529- 542, 1999.
Huang, B. S., Huang, Y. L., Lee, S. J., Chen, C. H., Chen, K. C., Huang, W. G., and Tsao, S., Array observations for long-period basin ground motions in the Taipei region during the M 7.1 eastern Taiwan offshore earthquake of 31 March 2002, Terr. Atmos. Ocean. Sci., 21, 477-484, doi:10.3319/TAO.2009.11.17.02(TH), 2010.
Huang, B. S., Teng, T. L., Liu, C. C., and Shin, T. C., Excitation of short-period surface waves in Taiwan by the Hyogo-ken Nanbu earthquake of January 17, 1995, J. Phys. Earth, 44, 419-427, 1996.
Huang, H., Yao, H., and van der Hilst, R. D., Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry, Geophys. Res. Lett., 37, L21310, doi:10.1029/2010GL044981, 2010.
Huang, R. D., and Yu, G. K., Shear-wave velocity structure of upper mantle under Taiwan from the array analysis of surface waves, Geophys. Res. Lett., 32, L07310, doi:10.1029/2004GL021868, 2005.
Huang, R. D., Yu, G. K., Chang, W. Y., and Chang, J. P., Lateral variations of shallow shear-velocity structure in southwestern Taiwan inferred from short-period Rayleigh waves, Earth Planets Space, 55, 349-354, 2003.
Huang, Y. C., Yao, H., Huang, B. S., van der Hilst, R. D., Wen, K. L., Huang, W. G., and Chen, C. H., Phase velocity variation at periods of 0.5-3.0 seconds in the Taipei Basin of Taiwan from correlation of ambient seismic noise, Bull. Seismol. Soc. Am., 100, 2250-2263, doi:10.1785/0120090319, 2010.
Huang, Y. L., Huang, B. S., Wen, K. L., Lai, Y. C., and Chen, Y. R., Investigation for strong ground shaking across the Taipei basin during the MW 7.0 eastern Taiwan offshore earthquake of 31 March 2002, Terr. Atmos. Ocean. Sci., 21, 485-493, doi:10.3319/TAO.2009. 12.11.01(TH), 2010.
Kuo, B. Y., Chi, W. C., Lin, C. R., Chang, E. T. Y., Collins, J., and Liu, C. S., Two-station measurement of Rayleigh-wave phase velocities for the Huatung basin, the westernmost Philippine Sea, with OBS: Implications for regional tectonics, Geophys. J. Int., 179, 1859-1869, doi:10.1111/j.1365-246X.2009.04391.x, 2009.
Kao, H., and Wu, F. T., The 16 September 1994 earthquake (mb=6.5) in the Taiwan Strait and its tectonic implications, Terr. Atmos. Ocean. Sci., 7, 13-29, 1996.
Kang, T. S., and Shin, J. S., Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea, Geophys. Res. Lett., 33, L17303, doi:10.1029/2006GL027044, 2006.
Kennett, B. L. N., Engdahl, E. R., and Buland, R., Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108-124, doi:10.1111/j.1365-246X.1995.tb03540.x, 1995.
Kim, K. H., Chiu, J. M., Kao, H., Liu, Q., and Yeh, Y. H., A preliminary study of crustal structure in Taiwan region using receiver function analysis, Geophys. J. Int., 159, 146-164, doi:10.1111/j.1365-246X. 2004.02344.x, 2004.
Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. H., and Shen, P., Three-dimensional Vp and Vs structural models associated with the active subduction and collision tectonics in the Taiwan region, Geophys. J. Int., 162, 204-220, doi:10.1111/j.1365- 246X.2005.02657.x, 2005.
Larose, E., Derode, A., Campillo, M., and Fink, M., Imaging from one-bit correlations of wideband diffuse wave fields, J. Appl. Phys., 95, 8393-8399, 2004.
Lee, S. J., Chen, H. W., Liu, Q., Komatitsch, D., Huang, B. S., and Tromp, J., Three-dimensional simulations of seismic-wave propaga- tion in the Taipei Basin with realistic topography based upon the Spectral-Element Method, Bull. Seismol. Soc. Am., 98, 253-264, doi: 10.1785/0120070033, 2008.
Li, H., Bernardi, F., Michelini, A., Surface wave dispersion measure- ments from ambient seismic noise analysis in Italy, Geophys. J. Int., 180, 1242-1252, doi: 10.1111/j.1365-246X.2009.04476.x, 2010a.
Li, H., Su, W., Wang, C. Y., and Huang, Z., Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet, Earth Planet. Sci. Lett., 282, 201-211, doi:10.1016/j.epsl.2009.03.021, 2009.
Li, H., Su, W., Wang, C. Y., Huang, Z., and Lv, Z., Ambient noise Love wave tomography in the eastern margin of the Tibetan plateau, Tectonophys., doi:10.1016/j.tecto.2009.12.018, 2010b.
Lin, A. T., and Watts, A. B., Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107, 2185, doi:10.1029/2001JB000669, 2002.
Lin, A. T., Watts, A. B., and Hesselbo, S. P., Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, 15, 453-478, doi:10.1046/j.1365-2117.2003. 00215.x, 2003.
Lin, C. H., Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophys., 324, 189-201, 2000.
Lin, C. H., Active continental subduction and crustal exhumation: the Taiwan orogeny, Terra Nova, 14, 281-287, 2002.
Lin, C. M., Chang, T. M., Huang, Y. C., Chiang, H. J., Kuo, C. H., and Wen, K. L., Shallow S-wave velocity structures in the Western Coastal Plain of Taiwan, Terr. Atmos. Ocean. Sci., 20, 299-308, doi:10.3319/TAO.2007.12.10.01(T), 2009.
Lin, C. R., Kuo, B. Y., Liang, W. T., Chi, W. C., Huang, Y. C., Collins, J., and Wang, C. Y., Ambient noise and teleseismic signals recorded by ocean-bottom seismometers offshore eastern Taiwan, Terr. Atmos. Ocean. Sci., 21, 743-755, doi:10.3319/TAO.2009.09.14.01(T), 2010.
Lin, F. C., Moschetti, M. P., and Ritzwoller, M. H., Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophys. J. Int., 173, 281-298, doi:10.1111/j.1365-246X.2008.03720.x, 2008.
Lin, F. C., Ritzwoller, M. H., and Shapiro, N. M., Is ambient noise tomography across ocean basins possible? Geophys. Res. Lett., 33, L14304, doi:10.1029/2006GL026610, 2006.
Lin, F. C., Ritzwoller, M. H., Townend, J., Bannister, S., and Savage, M. K., Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int., 170, 649-666, doi:10.1111/j.1365-246X.2007. 03414.x, 2007.
Liu, K. S., Shin, T. C., and Tsai Y. B., A free-field strong motion network in Taiwan: TSMIP, Terr. Atmos. Ocean. Sci., 10, 377-396, 1999.
Lobkis, O. I., and Weaver, R. L, On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 3011-3017, 2001.
Ma, K. F., and Song, T. R. A., Thermo-mechanical structure beneath the young orogenic belt of Taiwan, Tectonophys., 388, 21-31, doi: 10.1016/j.tecto.2004.07.003, 2004.
Ma, K. F., Wang, J. H., and Zhao, D., Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J. Phys. Earth, 44, 85-105, 1996.
Marzorati, S., and Bindi, D., Characteristics of ambient noise cross correlations in northern Italy within the frequency range of 0.1-0.6 Hz, Bull. Seismol. Soc. Am., 98, 1389-1398, doi:10.1785/ 0120070140, 2008.
McIntosh, K., Nakamura, Y., Wang, T. K., Shih, R. C., Chen, A., and Liu, C. S., Crustal-scale seismic profiles across Taiwan and the western Philippine Sea, Tectonophys., 401, 23-54, doi:10.1016/j.tecto.2005. 02.015, 2005.
Meier, U., Shapiro, N. M., and Brenguier, F., Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise, Geophys. J. Int., doi:10.1111/ j.1365-246X.2010.04550.x, 2010.
Moschetti, M. P., Ritzwoller, M. H., and Shapiro, N. M., Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps, Geochem. Geophys. Geosys., 8, Q08010, doi:10.1029/2007GC001655, 2007.
Nakamura, Y., McIntosh, K., and Chen, A. T., Preliminary results of a large offset seismic survey west of Hengchun Peninsula, southern Taiwan, Terr. Atmos. Ocean. Sci., 9, 395-408, 1998.
Prieto, G. A., and Beroza, G. C., Earthquake ground motion prediction using the ambient seismic field, Geophys. Res. Lett., 35, L14304, doi:10.1029/2008GL034428, 2008.
Rau, R. J., and Wu, F. T., Tomography imaging of lithospheric structure under Taiwan, Earth Planet. Sci. Lett., 133, 517-532, 1995.
Roecker, S. W., Yeh, Y. H., and Tsai, Y. B., Three-dimensional P and S wave velocity structures beneath Taiwan: deep structure beneath an arc-continent collision, J. Geophys. Res., 92, 10547-10570, 1987.
Roux, P., Kuperman, W. A., and the NPAL Group, Extracting coherent wave fronts from acoustic ambient noise in the ocean, J. Acoust. Soc. Am., 116, 1995-2003, 2004.
Roux, P., Sabra, K. G., Gerstoft, P., Kuperman, W. A., and Fehler, M. C., P-waves from cross-correlation of seismic noise, Geophys. Res. Lett., 32, L19303, doi:10.1029/2005GL023803, 2005a.
Roux, P., Sabra, K. G., Kuperman, W. A., and Roux, A., Ambient noise cross correlation in free space: Theoretical approach, J. Acoust. Soc. Am., 117, 79-84, 2005b.
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C., Extracting time-domain Green’s function estimates from ambient seismic noise, Geophys. Res. Lett., 32, L03310, doi:10.1029/ 2004GL021862, 2005a.
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C., Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32, L14311, doi:10.1029/2005GL023155, 2005b.
Sabra, K. G., Roux, P., and Kuperman, W. A., Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide, J. Acoust. Soc. Am., 117, 164-174, 2005c.
Sabra, K. G., Roux, P., Gerstoft, P., Kuperman, W. A., and Fehler, M. C., Extracting coherent coda arrivals from cross-correlations of long period seismic waves during the Mount St. Helens 2004 eruption, Geophys. Res. Lett., 33, L06313, doi:10.1029/2005GL025563, 2006.
Satoh, T., Kawase, H., Iwata, T., Higashi, S., Sato, T., Irikura, K., and Huang, H. C., S-wave veolocity structure of the Taichung Basin, Taiwan, estimated form array and single-station records of microtremors, Bull. Seismol. Soc. Am., 91, 1267-1282, 2001.
Saygin, E., and Kennett, B. L. N., Ambient seismic noise tomography of Australian continent, Tectonophys., 481, 116-125, doi:10.1016/ j.tecto.2008.11.013, 2010.
Seno, T., and Kawanishi, Y., Reappraisal of the arc-arc collision in Taiwan, Terr. Atmos. Ocean. Sci., 20, 573-585, doi:10.3319/ TAO.2008.07.11.02(TT), 2009.
Seno, T., Stein, S., and Gripp, A. E., A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941-17948, 1993.
Shapiro, N. M., and Campillo, M., Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614, doi:10.1029/2004GL019491, 2004.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H., High-resolution surface-wave tomography from ambient seismic noise, Science, 307, 1615-1618, doi:10.1126/science.1108339, 2005.
Shapiro, N. M., Ritzwoller, M. H., and Bensen, G. D., Source location of the 26 sec microseism from cross-correlations of ambient seismic noise, Geophys. Res. Lett., 33, L18310, doi:10.1029/2006GL027010, 2006.
Shih, R. C., Lin, C. H., Lai, H. L., Yeh, Y. H., Huang, B. S., and Yen, H. Y., Preliminary crustal structures across central Taiwan from modeling of the onshore-offshore wide-angle seismic data, Terr. Atmos. Ocean. Sci., 9, 317-328, 1998.
Sibuet, J. C, and Hsu, S. K., Geodynamics of the Taiwan arc-arc collision, Tectonophys., 274, 221-251, 1997.
Stehly, L., Campillo, M., and Shapiro, N. M., A study of the seismic noise from its long-range correlation properties, J. Geophys. Res., 111, B10306, doi:10.1029/2005JB004237, 2006.
Stehly, L., Fry, B., Campillo, M., Shapiro, N. M., Guilbert, J., Boschi, L., and Giardini, D., Tomography of the Alpine region from observa- tions of seismic ambient noise, Geophys. J. Int., 178, 338-350, doi: 10.1111/j.1365-246X.2009.04132.x, 2009.
Suppe, J., Mechanics of mountain building in Taiwan, Mem. Geol. Soc. China, 4, 67-89, 1981.
Suppe, J., Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-33, 1984.
Tarantola, A., and Nercessian, A., Three-dimensional inversion without blocks, Geophys. J. R. astr. Soc., 76, 299-306, 1984.
Teng, L. S., Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophys., 183, 57-76, 1990.
Teng, L. S., Lee, C. T., Peng, C. H., Chen, W. F., and Chu, C. J., Origin and geological evolution of the Taipei basin, northern Taiwan, Western. Pac. Earth Sci., 1, 115-142, 2001.
Traer, J., Gerstoft, P., Bromirski, P. D., Hodgkiss, W. S., and Brooks, L. A., Shallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence, J. Acoust. Soc. Am., 124, EL170-EL176, doi: 10.1121/1.2968296, 2008.
Tsai, Y. B., Seismotectonics of Taiwan, Tectonophys., 125, 17-37, 1986.
Tsai, Y. B., Teng, T. L., Chiu, J. M., and Liu, H. L., Tectonic implica- tions of the seismicity in the Taiwan region, Mem. Geol. Soc. China, 2, 13-41, 1977.
Wang, C. Y., Lee, Y. H., Ger, M. L., and Chen, Y. L., Investigating sub- surface structures and P- and S-wave velocities in the Taipei Basin, Terr. Atmos. Ocean. Sci., 15, 609-627, 2004.
Wang, H. L., Chen, H. W., and Zhu, L., Constraints on average Taiwan reference Moho discontinuity model - receiver function analysis using BATS data, Geophys. J. Int., 183, 1-19, doi:10.1111/ j.1365-246X.2010.04692.x, 2010a.
Wang, H. L., Zhu, L., and Chen, H. W., Moho depth variation in Taiwan from teleseismic receiver functions, J. Asian Earth Sci., 37, 286-291, doi:10.1016/j.jseaes.2009.08.015, 2010b.
Wang, J. H., Urban seismology in the Taipei metropolitan area: review and prospective, Terr. Atmos. Ocean. Sci., 19, 213-233, doi:10.3319/ TAO.2008.19.3.213(T), 2008.
Weaver, R. L., Information from seismic noise, Science, 307, 1568-1569, doi:10.1126/science.1109834, 2005.
Weaver, R. L., and Lobkis, O. I., Diffuse fields in open systems and the emergence of the Green’s function, J. Acoust. Soc. Am., 116, 2731- 2734, 2004.
Webb, S. C., The Earth's 'hum' is driven by ocean waves over the con- tinental shelves, Nature, 445, 754-756, doi:10.1038/nature05536, 2007.
Wen, K. L., and Peng, H. Y., Site effect analysis in the Taipei Basin: results from TSMIP network data, Terr. Atmos. Ocean. Sci., 9, 691- 704, 1998.
Wen, K. L., Fei, L. Y., Peng, H. Y., and Liu, C. C., Site effect analysis from the records of the Wuku downhole array, Terr. Atmos. Ocean. Sci., 6, 285-298, 1995.
Wessel, P., and Smith, W. H. F., New, improved version of the generic mapping tools released, Eos Trans. AGU, 79, 579, 1998.
Wu, F. T., Recent testonics of Taiwan, J. Phys. Earth, 26, S265-S299, 1978.
Wu, F. T., Rau, R. J., and Salzberg, D., Taiwan orogeny: thin-skinned or lithospheric collision?, Tectonophys., 274, 191-220, 1997.
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., and Avouac, J. P., Seismic tomography of Taiwan: Improved con- straints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312, doi:10.1029/2007JB004983, 2007.
Xu, Z. J., and Song, X., Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise cor- relation, Proc. Natl. Acad. Sci. USA, 106, 14207-14212, doi: 10.1073/pnas.0901164106, 2009.
Yang, Y., and Ritzwoller, M. H., Characteristics of ambient seismic noise as a source for surface wave tomography, Geochem. Geophys. Geosyst., 9, Q02008, doi:10.1029/2007GC001814, 2008a.
Yang, Y., and Ritzwoller, M. H., Teleseismic surface wave tomography in the western U.S. using the Transportable Array component of USArray, Geophys. Res. Lett., 35, L04308, doi:10.1029/ 2007GL032278, 2008b.
Yang, Y., Ritzwoller, M. H., Levshin, A. L., and Shapiro, N. M., Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168, 259-274, doi:10.1111/j.1365-246X.2006.03203.x, 2007.
Yang, Y., Li, A., and Ritzwoller, M. H., Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography, Geophys. J. Int., 174, 235-248, doi: 10.1111/j.1365-246X.2008.03779.x, 2008a.
Yang, Y., Ritzwoller, M. H., Lin, F. C., Moschetti, M. P., and Shapiro, N. M., Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography, J. Geophys. Res., 113, B12310, doi:10.1029/2008JB005833, 2008b.
Yang, Y., Zheng, Y., Chen, J., Zhou, S., Celyan, S., Sandvol, E., Tilmann, F., Priestley, K., Hearn, T. M., Ni, J. F., Brown, L. D., and Ritzwoller, M. H., Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography, Geochem., Geophys., Geosys., 11, Q08010, doi:10.1029/ 2010GC003119, 2010.
Yao, H., Ambient noise interferometry and surface-wave array tomo- graphy in southeastern Tibet, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 228pp, 2009.
Yao, H., and van der Hilst, R. D., Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet, Geophys. J. Int., 179, 1113-1132, doi:10.1111/j.1365-246X.2009.04329.x, 2009.
Yao, H., Beghein, C., and van der Hilst, R. D., Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and upper-mantle structure, Geophys. J. Int., 173, 205-219, doi:10.1111/j.1365-246X.2007.03696.x, 2008.
Yao, H., Campman, X., de Hoop, M. V., and van der Hilst, R. D., Estimation of surface wave Green’s functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet, Phys. Earth Planet. In., 177, 1-11, doi:10.1016/j.pepi.2009.07.002, 2009.
Yao, H., van der Hilst, R. D., and de Hoop, M. V., Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps, Geophys. J. Int., 166, 732-744, doi:10.1111/j.1365-246X.2006.03028.x, 2006.
Yao, H., Xu, G., Zhu, L., and Xiao, X., Mantle structure from inter- station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions, Phys. Earth Planet. Inter., 148, 39-54, doi:10.1016/j.pepi.2004.08.006, 2005.
Yeh, Y. H., Shih, R. C., Lin, C. H., Liu, C. C., Yen, H. Y., Huang, B. S., Liu, C. S., Chen, P. Z., Huang, C. S., Wu, C. J., and Wu, F. T., Onshore/offshore wide-angle deep seismic profiling in Taiwan, Terr. Atmos. Ocean. Sci., 9, 301-316, 1998.
Yen, H. Y., and Hsieh, H. H., A study on the compatibility of 3-D seismic velocity structures with gravity data of Taiwan, Terr. Atmos. Ocean. Sci., 21, 897-904, doi:10.3319/TAO.2010.03.03.01(T), 2010.
Yen, H. Y., Chen, C. H., Hsieh, H. H., Lin, C. R., Yeh, Y. H., Tsai, Y. B., Liu, J. Y., Yu, G. K., and Chen, Y. R., Magnetic survey of Taiwan and its preliminary interpretations, Terr. Atmos. Ocean. Sci., 20, 309-314, doi:10.3319/TAO.2008.04.08.01(T), 2009.
Yen, H. Y., Yeh, Y. H., and Wu, F. T., Two-dimensional crustal structures of Taiwan from gravity data, Tectonics, 17, 104-111, 1998.
Yu, S. B., Chen, H. Y., Kuo, L. C., Velocity field of GPS stations in the Taiwan area, Tectonophys., 274, 41-59, 1997.
Zheng, S., Sun, X., Song, X., Yang, Y., and Ritzwoller, M. H., Surface wave tomography of China from ambient seismic noise correlation, Geochem. Geophys. Geosyst., 9, Q05020, doi:10.1029/ 2008GC001981, 2008.
王乾盈,孫志財,臺北盆地震測地層解釋,經濟部中央地質調查所特刊,第11號,273-292,1999。
史旻弘,利用重力資料估算台灣海峽之莫霍面深度,國立中央大學地球物理研究所碩士論文,中壢,72頁,2001。
李昱,姚華建,劉啟元,陳九輝,Robert D. van der Hilst,李順成,黃慧,郭飚,王峻,齊少華,川西地區台陣環境噪聲瑞利波相速度層析成像,地球物理學報,第53卷,842-852,doi:10.3969/ j.issn.0001-5733.2010.04.009,2010。
何春蓀,臺灣地質概論:臺灣地質圖說明書(增訂第二版),中華民國經濟部,台北,164頁,1986。
易桂喜,姚華建,朱介壽,Robert D. van der Hilst,用Rayleigh面波方位各向異性研究中國大陸岩石圈形變特徵,地球物理學報,第53卷,256-268,doi:10.3969/j.issn.0001-5733.2010.02.004,2010。
林慶仁,台灣東部海域地震觀測研究暨儀器研發,國立中央大學地球物理研究所博士論文,中壢,110頁,2010。
高弘,陳榮裕,張建興,台灣地區寬頻地震站之接收函數分析,中央氣象局地震技術報告,第33卷,88-136,2003。
陳燕玲,臺灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,中壢,172頁,1995。
經濟部中央地質調查所特刊第十一號,臺北盆地地下地質與工程環境專輯,中華民國經濟部,台北,406頁,1999。
經濟部中央地質調查所特刊第十三號,臺灣活動斷層概論第二版:五十萬分之一臺灣活動斷層分析圖說明書,中華民國經濟部,台北,122 頁,2000。
經濟部中央地質調查所特刊第十九號,臺灣北部的活動斷層:二萬五千分之一活動斷層條帶圖說明書,中華民國經濟部,台北,130 頁,2007。
廖彥喆,利用接收函數法分析台灣深部地殼構造,國立中央大學地球物理研究所碩士論文,中壢,91頁,2005。
劉志坤,黃金莉,利用背景噪聲互相關研究汶川地震震源區地震波速度變化,地球物理學報,第53卷,853-863,doi:10.3969/ j.issn.0001-5733.2010.04.010,2010。
鄧屬予,台北盆地之地質研究,西太平洋地質科學,第6卷,1-28,2006。
鄧屬予,臺灣第四紀大構造,經濟部中央地質調查所特刊,第18號,1-24,2007。
鄧屬予,李錫堤,劉平妹,宋聖榮,曹恕中,劉桓吉,彭志雄,臺北堰塞湖考證,地理學報,第36期,77-100,2004a。
鄧屬予,劉聰桂,陳于高,劉平妹,李錫堤,劉桓吉,彭志雄,大漢溪襲奪對台北盆地的影響,師大地理研究報告,第41期,61-78,2004b。
指導教授 黃柏壽、溫國樑
(Bor-shouh Huang、Kuo-liang Wen)
審核日期 2010-12-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明