博碩士論文 92643003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:100.26.179.196
姓名 王傳盛(Chuan-Sheng Wang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 對流層延遲效應與全球定位系統高程定位之研究
(A Study on Relationship between Tropospheric Path Delay and GPS Height)
相關論文
★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究★ WVR、GPS及氣球探空觀測可降水量之比較
★ GPS斷層掃描估算大氣濕折射係數模式★ GPS觀測大氣閃爍之研究
★ GPS 氣象中地面氣象模式之改進★ 由GPS信號反演大氣濕折射度之數值模擬
★ 近即時GPS觀測可降水技術之研究★ 利用水氣資訊改善降水估計之研究
★ GPS掩星觀測反演與反演誤差探討★ 微波輻射計數位相關器之設計與實現
★ GPS與探空氣球資料觀測可降水量 與降雨之關係★ 利用GPS訊號估算對流層斜向水氣含量之研究
★ 利用遙測影像反演水稻田蒸發散量 之研究★ 利用MODIS影像反演嘉義地區水稻田蒸發散量之研究
★ 利用MODIS影像於水稻田蒸發散之研究★ 分析以全球定位系統近即時估計可降水之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的進步,全球定位系統(Global Positioning System, GPS)已被應用於許多需要導航及精密定位的科學及工程領域,因此如何精進其定位精度是一個被廣為探討及研究的課題。在一般及最先進的GPS資料分析方法中,定位精度在水平方向優於高程,其中一個最主要的原因就在於大氣水氣含量的變化所造成。
本文主要是探討對流層延遲效應與GPS高程坐標之間的相關性;研究中以標準大氣、地表氣象觀測及水氣微波輻射計三種氣象資料輔以參數估計及異質觀測修正的方法,對對流層延遲參數與GPS高程坐標之間的關係進行通盤且深入的討論。
我們研究結果發現,以地表氣象觀測資料取代標準大氣資料,進而配合參數估計方式,對靜態觀測的GPS高程坐標量值而言改變不大,約在數個mm等級。以地表氣象觀測資料取代標準大氣資料,進而配合異質觀測修正方式,對GPS靜態觀測的基線長度而言,影響量值約在cm等級,且基線重現性精度會提高;而對靜態觀測的GPS高程坐標而言,影響量值亦在cm等級左右,但多日平均標準差則較不穩定。以水氣微波輻射儀資料進而配合異質觀測修正方式,其結果大致與地表氣象觀測資料配合異質觀測修正方式雷同;但就晴朗天氣下的水氣微波輻射儀資料配合異質觀測修正方式時,其成果與參數估計方式比較,顯示出較佳的結果。對流層延遲量參數量值反應於GPS高程坐標的結果相當顯著。如欲提高GPS高程坐標精度,首要考量應當是確認所使用的對流層延遲量的正確性,再者使用異值觀測修正方法,應對觀測儀器有嚴格的資料篩選機制。
摘要(英) With the advancement of technology, Global Positioning System (GPS) observations have been used in a variety of scientific and technological disciplines requiring high-precision positioning. Hence, how to improve the GPS positing accuracy is constantly considered as an important research topic. In the GPS data processing schemes for general purposes and of most advanced, the positioning accuracy is much higher in horizontal coordinates than in the vertical coordinate. One of the major causes is in that the uncertainty and variation resulting from in atmospheric water vapor is very much significant.
In this dissertation, we investigate the relationship between tropospheric delay due to water vapor and the GPS positioning accuracy in the vertical coordinate. The tropospheric delay is obtained by three ways, standard atmospheric value (SAV), surface meteorological measurement (SMM), and water vapor radiometer (WVR) that are incorporated into the parameter estimation and external correction methods, respectively. Results based on thorough and complete investigations are consequently presented.
Several major findings are obtained from our investigations and stated behind. The vertical coordinate from static GPS positioning by use of parameter estimation method remains almost the same when SAV is replaced by SMM with deviation only on the order of mm. In contrast, the baseline derived from static GPS positioning may differ by an order of cm by use of external correction method when SAV is replaced by SMM. In addition, repeatability of the baseline is improved. Similarly, the vertical coordinate may vary on the order of cm, the average daily standard deviations vary unexpectedly large over a period of several days. Results from the use of WVR are similar to those from the use of SMM for the external correction method. Under clear sky conditions, results from WVR appear better when they are incorporated into external correction method than parameter estimation method. This indicates the significant impact of the tropospheric delay on the vertical coordinate determination by GPS positioning. Apparently, it is important to acquire accurate tropospheric delay in order to assure high-accuracy of vertical coordinate determination. Meanwhile, it is crucial to utilize high-quality data when external correction method is implemented.
關鍵字(中) ★ 水氣微波輻射儀
★ 對流層延遲
★ 全球定位系統
關鍵字(英) ★ Tropospheric Path Delay
★ Water Vapor Radiometer
★ GPS
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 X
第1章. 前言 1
1.1. 動機與目的 1
1.2. 文獻回顧 2
第2章. GPS定位理論 12
2.1. GPS觀測方程式 13
2.1.1. 非線性GPS觀測方程式 13
2.1.2. 非線性GPS觀測方程式線性化 14
2.1.3. 線性化GPS觀測方程式矩陣化 16
2.1.4. 線性GPS觀測方程式參數分類 20
2.2. GPS相對定位理論 22
2.2.1. GPS載波相位一次差觀測方程式 26
2.2.2. GPS載波相位二次差觀測方程式 27
2.2.3. GPS載波相位三次差觀測方程式 28
第3章. 對流層延遲誤差理論分析 30
3.1. 對流層性質與電磁波傳遞 30
3.2. 對流層延遲原理 30
3.3. 對流層延遲經驗氣象模型 33
3.4. 對流層水平梯度模型 37
3.5. 水氣微波輻射儀(WVR) 40
3.5.1. WVR測站概況 40
3.5.2. WVR原理 41
3.5.3. WVP1500介紹 43
第4章. 研究方法 46
4.1. 應用地表氣象資料於參數估計法 48
4.1.1. 觀測資料 48
4.1.2. 計算流程 51
4.2. 應用地表氣象資料及水氣微波輻射儀資料於異質觀測修正法 53
4.2.1. 觀測資料 53
4.2.2. 計算流程 55
4.3. 水平梯度因子探討 57
4.3.1. 觀測資料 57
4.3.2. 計算流程 59
4.4. GPS資料計算軟體說明 61
第5章. 結果與分析 64
5.1. 使用地表氣象資(SMM)料於參數估計法 64
5.1.1. 長時間(24小時)觀測 64
5.1.2. 短時間(4小時)觀測 67
5.2. 使用地表氣象(SMM)資料、水氣微波輻射儀(WVR)於異質觀測修正法 69
5.2.1. 基線成果 69
5.2.2. GPS高程成果 74
5.2.3. 對流層延遲量比較 79
5.2.4. N、E平面坐標成果 81
5.3. 水平梯度因子探討 88
5.3.1. 對流層天頂延遲量種類說明 88
5.3.2. 對流層天頂延遲量比較成果 89
5.3.3. 基線與GPS高程成果 94
5.3.4. WVR成果(單基線) 96
第6章. 結論與建議 101
6.1. 地表氣象(SMM)資料結論 101
6.2. 水氣微波輻射儀(WVR)資料結論 102
6.3. 水平梯度因子結論 102
6.4. 總結與未來工作 102
參考文獻 104
附錄一 地表氣象(SMM)資料於參數估計法之GPS高程成果(長時間-24小時) 109
附錄二 地表氣象資(SMM)料於參數估計法之GPS高程較差成果(長時間-24小時) 125
附錄三 地表氣象(SMM)資料於參數估計法之GPS高程成果(短時間-4小時) 133
附錄四 水平梯度因子之天頂對流層延遲量比較成果 139
附錄五 水平梯度因子之基線長度比較成果 205
附錄六 水平梯度因子之GPS高程比較成果 213
參考文獻 Alber, C., R. Ware, C. Rocken, and F. Solheim (1997), GPS surveying with 1 mm precision using corrections for atmospheric slant path delay, Geophysical Research Letters, 24(15), 1859-1862.
Askne, J., and H. Nordius (1987), Estimation of tropospheric delay for microwaves from surface weather data, Radio science, 22(3), 379-386.
Bar-Sever, Y. E., P. M. Kroger, and J. A. Borjesson (1998), Estimating horizontal gradients of tropospheric path delay with a single GPS receiver, Journal of Geophysical Research-Solid Earth, 103(B3), 5019-5035.
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), Gps Meteorology - Remote-Sensing of Atmospheric Water-Vapor Using the Global Positioning System, Journal of Geophysical Research-Atmospheres, 97(D14), 15787-15801.
Bock, O., and E. Doerflinger (2000), Atmospheric processing methods for high accuracy positioning with the Global Positioning System, paper presented at COST-716 Workshop, laboratoire OEMI, Soria Moria, Oslo (N).
Bock, O., and E. Doerflinger (2001), Atmospheric modeling in GPS data analysis for high accuracy positioning, Physics and Chemistry of the Earth Part a-Solid Earth and Geodesy, 26(6-8), 373-383.
Bock, Y. (1998), Medium distance GPS measurements, in GPS for Geodesy, Lecture Notes in Earth Sciences, edited by P. J. G. Teunissen and A. Kleusberg, Springer-Verlag, Berlin-Heidelberg-New York.
Businger, S., S. R. Chiswell, M. Bevis, J. Duan, R. A. Anthes, C. Rocken, R. H. Ware, M. Exner, T. VanHove, and F. S. Solheim (1996), The promise of GPS in atmospheric monitoring, Bulletin of the American Meteorological Society, 77(1), 5-18.
Chen, G., and T. A. Herring (1997), Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, Journal of Geophysical Research-Solid Earth, 102(B9), 20489-20502.
Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (2007), Bernese GPS Software, Version 5.0.
Davis, J. L., T. A. Herring, Shapiro, II, A. E. E. Rogers, and G. Elgered (1985), Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, Radio science, 20(6), 1593-1607.
Davis, J. L., G. Elgered, A. E. Niell, and C. E. Kuehn (1993), Ground-Based Measurement of Gradients in the Wet Radio Refractivity of Air, Radio Science, 28(6), 1003-1018.
Dixon, T. H., and S. K. Wolf (1990), Some Tests of Wet Tropospheric Calibration for the Casa-Uno Global Positioning System Experiment, Geophysical Research Letters, 17(3), 203-206.
Dodson, A. H., P. J. Shardlow, L. C. M. Hubbard, G. Elgered, and P. O. J. Jarlemark (1996), Wet tropospheric effects on precise relative GPS height determination, Journal of Geodesy, 70(4), 188-202.
Elgered, G., J. L. Davis, T. A. Herring, and Shapiro, II (1991), Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay, Journal of Geophysical Research-Solid Earth, 96(B4).
Elgered, G. (1992), Refraction in the Troposphere, paper presented at Refraction of Transatmospheric Signals in Geodesy, Netherlands Geod. Comm., Netherlands Geod. Comm., Delft.
Elgered, G. (1993), Tropospheric radio-path delay from ground-based microwave radiometry. , in Atmospheric Remote Sensing by Microwave Radiometry, edited by M. A. JANSSEN, Wiley, New-York.
Emardson, T. R., and P. O. J. Jarlemark (1999), Atmospheric modelling in GPS analysis and its effect on the estimated geodetic parameters, Journal of Geodesy, 73(6), 322-331.
England, M. N., R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and T. A. Clark (1992), Atmospheric Water-Vapor Measurements - Comparison of Microwave Radiometry and Lidar, Journal of Geophysical Research-Atmospheres, 97(D1), 899-916.
Gardner, C. S. (1977), Correction of laser tracking data for the effects of horizontal refractivity gradients, Applied Optics, 16(9), 2427-2432.
Goad, C. C., and L. Goodman (1974), A modified Hopfield tropospheric refraction correction model, paper presented at Fall Annual Meeting of the American Geophysical Union, San Francisco, California.
Hauser, J. P. (1989), Effects of deviations from hydrostatic equilibrium on atmospheric corrections to satellite and lunar laser range measurements, Journal of Geophysical Research (ISSN 0148-0227), 94.
Herring, T. A. (1992), Modeling Atmospheric Delays in the Analysis of Space Geodetic Data., paper presented at Refraction of Transatmospheric Signals in Geodesy, Netherlands Geod. Comm., Netherlands Geod. Comm., Delft.
Hopfield, H. S. (1971), Tropospheric effect on electromagnetically measured range: prediction from surface weather data, Radio Sci., 6(3), 357-367.
Hugentobler, U., S. Schar, P. Fridez, and E. Beutler (2001), Bernese GPS Software: Version 4.2, Astronomical Institute, University of Bern.
Hugentobler, U., R. Dach, P. Fridez, and M. Meindl (2005), Bernese GPS Software, Version 5.0 Draft.
Janes, H. W., R. B. Langley, and S. P. Newby (1991), Analysis of tropospheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning, Journal of Geodesy, 65(3), 151-161.
Johasson, J. M., T. R. Emardson, P. O. J. Jarlemark, L. P. Gradinarsky, and G. Elgered (1998), The Atmospheric Influence on the Results from the Swedish GPS Network, Physics and Chemistry of the Earth, 23(1), 107-112.
Jonge, P. J. d. (1998), A processing strategy for the application of the GPS in networks, Ph.D dissertation, Delft University of Technology.
Kim, D., R. B. Langley, J. Bond, and A. Chrzanowski (2003), Local deformation monitoring using GPS in an open pit mine: Initial study, GPS Solutions, 7(3), 176-185.
Kleijer, F. (2004), Troposphere modeling and filtering for precise GPS leveling, Ph.D dissertation, Delft University of Technology.
Klobuchar, J. A., and J. M. Kunches (2003), Comparative range delay and variability of the earth's troposphere and the ionosphere, GPS Solutions, 7(1), 55-58.
Leick, A. (2004), GPS satellite surveying, Wiley.
Liou, Y. A., and C. Y. Huang (2000), GPS observations of PW during the passage of a typhoon, Earth Planets and Space, 52(10), 709-712.
Liou, Y. A., Y. T. Teng, T. Van Hove, and J. C. Liljegren (2001), Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, Journal of Applied Meteorology, 40(1), 5-15.
Macmillan, D. S. (1995), Atmospheric Gradients from Very Long-Base-Line Interferometry Observations, Geophysical Research Letters, 22(9), 1041-1044.
Marini, J. W. (1972), Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, 7(2), 223-231.
Marini, J. W., and C. W. Murray (1973), Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees, NASA Tech. Rep. X-591-73-351 (NASA, Greenbelt, Md., 1973).
McCarthy, D. D. (1996), IERS conventions (1996), IERS Technical Note, 21, 65-66.
Mendes, V. B., and R. B. Langley (1999), Tropospheric zenith delay prediction accuracy for high-precision GPS positioning and navigation, Navigation, 46(1), 25-34.
Niell, A. E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research-Solid Earth, 101(B2), 3227-3246.
Owens, J. C. (1967), Optical refractive index of air: dependence on pressure, temperature and composition, Applied Optics, 6(1), 51-59.
Rocken, C., J. M. Johnson, R. E. Neilan, M. Cerezo, J. R. Jordan, M. J. Falls, L. D. Nelson, R. H. Ware, and M. Hayes (1991), The Measurement of Atmospheric Water-Vapor - Radiometer Comparison and Spatial Variations, IEEE Transactions on Geoscience and Remote Sensing, 29(1), 3-8.
Rothacher, M., and G. Beutler (1998), The role of GPS in the study of global change, Physics and Chemistry of the Earth, 23(9-10), 1029-1040.
Saastamoinen, J. (1972), Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In the use of artificial satellites for geodesy, Geophys. Monogr. Ser. edited by Henriksen SW et al, 15, 247-251.
Saastamoinen, J. (1973), Contributions to the theory of atmospheric refraction, Bulletin Géodésique, 47(1), 13-34.
Santerre, R. (1991), Impact of GPS satellite sky distribution, Manuscripta Geodaetica, 16, 28-53.
Schenewerk, M., T. M. van Dam, G. Sasagawa, S. Philipsen, and K. Larson (1998), A Detailed Analysis of Tropospheric Effects on Geodetic Observations at TMGO, Physics and Chemistry of the Earth, 23(1), 103-106.
Scherneck, H. G. (1991), A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements, Geophysical Journal International, 106(3), 677-694.
Sierk, B., B. Burki, H. BeckerRoss, S. Florek, R. Neubert, L. P. Kruse, and H. G. Kahle (1997), Tropospheric water vapor derived from solar spectrometer, radiometer, and GPS measurements, Journal of Geophysical Research-Solid Earth, 102(B10), 22411-22424.
Solheim, F. S., J. Vivekanandan, R. H. Ware, and C. Rocken (1999), Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates, Journal of Geophysical Research, 104(D8), 9663-9670.
Thayer, G. D. (1974), An improved equation for the radio refractive index of air., Radio Sci., 9(10).
Tralli, D. M., and S. M. Lichten (1990), Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements, Journal of Geodesy, 64(2), 127-159.
Ulaby, F. T., R. K. Moore, and A. K. Fung (1981), Microwave remote sensing: active and passive, Artech House, Norwood, MA, 2062.
Ware, R., C. Rocken, F. Solheim, T. Van Hove, C. Alber, and J. Johnson (1993), Pointed Water Vapor Radiometer Corrections for Accurate Global Positioning System Surveying, Geophysical Research Letters, 20, 2635-2635.
Ware, R. H., C. Rocken, and J. B. Snider (1985), Experimental Verification of Improved GPS-Measured Baseline Repeatability Using Water-Vapor Radiometer Corrections, IEEE Transactions on Geoscience and Remote Sensing, 467-473.
Weckwerth, T. M., V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, and R. M. Banta (1999), NCAR–NOAA lower-tropospheric water vapor workshop, Bulletin of the American Meteorological Society, 80(11), 2339-2357.
指導教授 劉說安(Yuei-An Liou) 審核日期 2009-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明