博碩士論文 93221015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.231.228.109
姓名 孫梅珊(Mei-San Sun)  查詢紙本館藏   畢業系所 數學系
論文名稱 可分解友矩陣之研究
(A Study on Reducible Companion Matrices)
相關論文
★ 橢圓形數值域之四階方陣★ 數值域邊界上之線段
★ 正規壓縮算子與正規延拓算子★ 加權排列矩陣及加權位移矩陣之數值域
★ 可分解友矩陣之數值域★ 關於巴氏空間上連續函數的近乎收斂性
★ 三角不等式與Jensen不等式之精化★ 缺陷指數為1的矩陣之研究
★ A-Statistical Convergence of Korovkin Type Approximation★ I-Convergence of Korovkin Type Approximation Theorems for Unbounded Functions
★ 四階方陣的高秩數值域★ 位移算子其有限維壓縮算子的反矩陣
★ 2×2方塊矩陣的數值域★ 加權位移矩陣的探討與廣義三角不等式的優化
★ 喬登方塊和矩陣的張量積之數值域半徑★ 3×3矩陣乘積之數值域及數值域半徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討「可分解友矩陣」的一些性質。我們證明若一個非么正友矩陣 A 可分解成A1 ⊕ A2,則 且
。令*1 1 rank( ) 1 kI −AA =* =
2 2 rank( ) 1 n k I AA − − { : rank( * )=1 and | | , ( )} n n Sα ≡ A∈M I−AA λ =α ∀λ ∈σ A
,則相當於1 是屬於A k Sα 且2 是屬於A 1/
n k S α
− 。亦證明每一個屬於n Sα
集合內的矩陣均具有循環、不可分解、且其數值域之邊界為一
可微曲線。並證明下列敘述互為等價:(a) ;(b)
;(c)
1 W(A)=W(A)
1 1) n 2 n1 W(J ) W(A − ⊆ W(A ) W(J ) − ⊆ 。
摘要(英) In this thesis, we study some properties of reducible companion matrices. We first prove that if a nonunitary reducible companion matrix A is unitarily equivalent to the direct sum A_1oplus A_2 on mathbb{C}^koplusmathbb{C}^{n-k} with sigma(A_1)={aom_n^{j_1},cdots,aom_n^{j_k}} and sigma(A_2)={(1/ ar{a})om_n^{j_{k+1}},cdots,(1/ ar{a})om_n^{j_n}},where |a|>1 and om_n denotes the nth primitive root of 1,then rank(I_k-A^{*}_1A_1)=rank(I_{n-k}-A^{*}_2A_2)=1. We denote mathcal{S}^{al}_nequiv{Ain M_n:rank(I_n-A^{*}A)=1 and |la|=al,forall: lainsigma(A)}, thus A_1 is in mathcal{S}^{al}_k and A_2 is in mathcal{S}^{1/al}_{n-k}. Next, we prove that every mathcal{S}^{al}_n-matrix is irreducible, cyclic, and the boundary of its numerical range is a differentiable curve.
Furthermore, we show that the following statements are equivalent:
(a) W(A)=W(A_1); (b)W(J_{n-1})subseteq W(A_1); (c)W(A_2)subseteq W(J_{n-1}).
關鍵字(中) ★ 可分解之友矩陣 關鍵字(英) ★ reducible companion matrices
★ numerical range
論文目次 1. Introduction . . . . . . . . . . . . . . . . . . . . . . .1
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Basic Properties of Numerical Range . . . . . . . . . . .3
2.2 Companion Matrices . . . . . . . . 4
3. The S^alpha_n Matrices . . . . . . .6
4. Reducible Companion Matrices . . . . . . .21
References . . . . . . .29
參考文獻 [1] H. Bercovici,(1988). Operator theory and arithmetic in H1, Amer. Math. Soc.,Providence.
[2] H.-L. Gau and P. Y. Wu, Numerical range of S(Á), Linear and Multilinear Al-
gebra, 45 (1998), 49-73.
[3] H.-L. Gau and P. Y.Wu, Lucas' theorem re¯ned, Linear and Multilinear Algebra,45 (1999), 359-373.
[4] H.-L. Gau and P. Y. Wu, Condition for the numerical range to contain an elliptic disc, Linear Algebra and its Appl., 364 (2003), 213-222.
[5] H.-L. Gau and P. Y. Wu, Companion matrices: reducibility, numerical ranges
and similarity to contractions, Linear Algebra and its Appl., 383 (2004), 127-142.
[6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press,
Cambridge, 1985.
[7] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University
Press, 1991.
[8] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The numerical range of 3 £ 3
matrices, Linear Algebra and its Appl., 252 (1997), 115-139.
[9] B. Mirman, Numerical ranges and Poncelet curves, Linear Algebra and its Appl.,281 (1998), 59-85.
[10] P. Y. Wu, Numerical ranges of Hilbert space operators, preprint.
指導教授 高華隆(Hwa-Long Gau) 審核日期 2006-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明