博碩士論文 93222006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.235.172.213
姓名 許紘瑋(Hung-wei Shiu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces
★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長★ 在氧化鋁上成長金與白金的和金奈米粒子
★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用同步輻射光源的光激發電子能譜儀(PES)來研究甲醇在良好奈米金觸媒模型上的吸附以及分解反應。利用氣相沈積法,我們在超高真空中於300 K,450 K以及570 K三種溫度下,將金奈米團簇成長在完整有序的氧化鋁薄膜Al2O3/NiAl(100)上;我們超高真空的氣壓小於3 x 10-10 torr。而我們使用PES以及掃描穿隧電子顯微鏡(STM)來研究金奈米團簇。從STM的影像中,我們發現金原子會集結於氧化鋁的結晶條紋上進而形成奈米團簇,且金奈米團簇的平均粒徑大小在樣品表面溫度450 K的時候會有些微的變大。然而,在表面溫度570 K的時候金奈米團簇的平均大小有一個突然的變化,我們認為這可能是因為高擴散係數所造成的。
為了研究甲醇分解反應,甲醇在120 K低溫下吸附於Au/Al2O3/NiAl (100)表面上,在這之後並加溫到各種不同的溫度。在加溫的過程中,我們發現甲醇的C1s峰值隨著加溫的溫度往低束縛能的方向偏移,這指出了在甲醇完全分解成一氧化碳之前會有至少一種中間產物的生成。我們也發現甲醇分解反應的活性跟金觸媒的結構有相當大的關係。而在310 K的退火之後,C1s 的峰值忽然產生偏移,或許可以暗示C-O鍵結的斷裂以及碳氫化合物的重新生成。
摘要(英) We have studied the adsorption and decomposition of methanol on well-defined supported Au nanoclusters as a model catalyst by using synchrotron-based high-resolution photoemission spectroscopy (PES). Au nanoclusters are deposited on well-ordered Al2O3 film grown on NiAl (100) through vapor deposition in the ultrahigh vacuum conditions (<3 x 10-10 torr) at 300 K, 450 K, and 570 K. Gold nanoclusters are studied by using both PES and scanning tunneling microscopy (STM). Form STM images, Au atoms nucleated on crystalline Al2O3 films as nanoclusters and the average size of Au nanoclusters is slightly increased at the deposition temperature of 450 K. However, at 570 K deposition temperature sudden change in the average size of Au nanoclusters is observed, which is probably due to higher diffusion coefficient.
To study methanol decomposition, methanol was adsorbed on Au/Al2O3/NiAl (100) at 120 K and subsequently annealed to different temperatures. In our annealing experiment we observe that the methanol C1s peak shifts toward lower binding energy with annealing temperature, which indicates more than one intermediate C-species before it decomposes to CO. We also found the activity for methanol decomposition is highly dependent on the structure of supported Au catalyst. After annealing to 310 K, a sudden shift for C1s peaks may imply that C-O scission and reforming to another hydrocarbon species.
關鍵字(中) ★ 氧化鋁
★ 奈米
★ 金
★ 分解
★ 甲醇
★ 觸媒
關鍵字(英) ★ XPS
★ Al2O3
★ Nano
★ Gold
★ Decompose
★ Catalytic
★ Methanol
論文目次 Chapter 1 Introduction ........................................................... 1
Reference ................................................................ 4
Chapter 2 Basic Concepts............................................. 6
2.1 Energy Application from Methanol ................................... 6
2.1.1 H2 Generation from Methanol ................................... 6
2.1.2 Literature Survey of Methanol Decomposition......... 8
2.2 Al2O3/NiAl(100) ..................................................11
2.2.1 Properties of NiAl (100) ............................................11
2.2.2 θ-Al2O3 Grown on NiAl (100) ....................................12
Reference ..............................................................15
Chapter 3 Experimental Instruments and Methods .........17
3.1 Ultrahigh Vacuum (UHV) System ...................................17
3.1.1 STM Analysis Chamber ............................................19
3.1.2 XPS Analysis Chamber ............................................20
3.2 Scanning Tunneling Microscopy (STM) ...........................22
3.3 X-ray Photoemission Spectroscopy (XPS) ........................26
3.4 Experimental Methods ..................................................31
3.4.1 Sample Cleaning .......................................................31
3.4.2 Oxygen Exposure on NiAl (100) ...............................33
3.4.3 Gold Deposition on Al2O3/NiAl (100) .......................35
3.4.4 Methanol Adsorption and Decomposition ...............35
Reference .....................................................37
Chapter 4 Results and Discussions ............................................38
4.1 Growth of Au Nanoclusters on Al2O3/NiAl(100) ..............38
4.2 Methanol Decomposition on Au/Al2O3/NiAl(100) ............52
4.2.1 Methanol Adsorption and Decomposition on
Au/Al2O3/NiAl (100) ................................................52
4.2.2 Methanol Adsorption and Decomposition on Au
Clusters with Various Sizes ...................................61
Reference ..................................................70
Chapter 5 Conclusions .........................................................71
參考文獻 Chapter1
[1] K. Kordesch, G. Simader, Fuel Cells and their Applications, Weinheim, 1996
[2] M. M. Schubert, M. J. Kahlich, H. A. Gasteiger, R. J. Behm, J. Power Sources 84, 175 (1999)
[3] T. V. Choudhary, D. W. Goodman, Catal. Today 77, 65 (2002)
[4] Y. Usami, K. Kahawa, Y. Matsumura, H. Sakurai, M. Haruta, Appl. Catal. A 171, 123 (1998)
[5] C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A 93, 245 (1993)
[6] M. L. Cubeiro, J. L. G. Fierro, Appl. Catal. A 168, 307 (1998)
[7] S. Velu, K. Suzuli, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J. Catal. 194, 373 (2000)
[8] B. A. Sexton, Surf. Sci. 102, 271 (1981)
[9] K. Christmann, J. E. Demuth, J. Chem. Phys. 76, 6308 (1982)
[10] A. K. Chen, R. I. Masel, Surf. Sci. 343, 17 (1995)
[11] C. P. Vinod, J. W. Niemantsverdriet, B. E. Nieuwenhuys, Phys. Chem. Chem. Phys. 7, 1824 (2005)
[12] S. Schauermann, J. Hoffmann, V. Joh?nek, J. Hartmann, J. Libuda, Phys. Chem. Chem. Phys. 4, 3909 (2002)
[13] F. Boccuzzi, A. Chiorino, M. Manzoli, J. Power Source 118, 304 (2003)
[14] I. E. Wachs, Gold Bull 16, 98 (1983)
[15] J. Schwank, Gold Bull 16, 103 (1983)
[16] M. Haruta, Catal. Today 36, 153 (1997)
[17] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J.Catal. 115, 301 (1989)
[18] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178, 566 (1998)
[19] D. Andreeva, V. Idakeiv, T. Tabakova, A. Andreev, R. Giovanoli, Appl. Catal. A 134, 275 (1996)
[20] A. Ueda, M. Haruta, Gold Bull 32, 3 (1999)
[21] H. Sakuri, M. Haruta, Catal.Today 29, 361 (1996)
[22] G. Srinivas, J. Wright, C.S. Bai, R. Cook, Studies in Surface Science Catal. 101, 427 (1996)
[23] M. M. Schubert, M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Power [1] J. J. Spivey, Catalysis Volume 16, Royal Society of Chemistry (2002)
Chapter2
[1] J. J. Spivey, Catalysis Volume 16, Royal Society of Chemistry (2002)
[2] M. Manzoli, A. Chiroino, F. Boccuzzi, Appl. Catal. B 57, 201 (2004)
[3] Y. Usami, K. Kahawa, Y. Matsumura, H. Sakurai, M. Haruta, Appl. Catal. A 171, 123 (1998)
[4] C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A 93, 245 (1993)
[5] M. L. Cubeiro, J. L. G. Fierro, Appl. Catal. A 168, 307 (1998)
[6] S. Velu, K. Suzuli, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J. Catal. 194, 373 (2000)
[7] M. L. Poutsma, J. A. Rabo, A. P. Risch, U. S. Patent No. 4 119, 656 (1978)
[8] D. R. Stull, E. F. Westrum, Jr. and G. F. Sinke, The Chemical Thermodynamic of Organic Compounds, Wiley, 1969
[9] J. J. Chen, Z. C. Jiang, Y. Zhou, B. R. Charkraborty, N. Winograd, Surf. Sci. 328, 248 (1995)
[10] M. Rebholz, N. Kruse, J. Chem. Phys. 95, 7745 (1991)
[11] O. Rodriguez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter, H. J. Freund, Surf. Sci. 566-568, 740 (2004)
[12] S. Schauermann, J. Hoffmann, V. Joh?nek, J. Hartmann, J. Libuda, H. J. Freund, Catal. Lett. 84, 209 (2002)
[13] C. P. Vinod, J. W. Niemantsverdriet, B. E. Nieuwenhuys, Phys. Chem. Chem. Phys. 7, 1824 (2005)
[14] R. Grisel, K. J. Weststrate, A. Gluhoi, B. E Nieuwenhuys, Gold Bulletin 35, 39 (2002)
[15] D. A. Outka, R. J. Madix, J. Am. Chem. Soc. 109, 1708 (1987).
[16] M. A. Lazaga, D. T. Wickham, D. H. Parker, G. N. Kastanas, B. E. Koel, Am. Chem. Soc. Symp. Ser. 523, 90 (1993).
[17] M. Haruta, Catal. Today 36, 153 (1997)
[18] M. Haruta, A. Ueda, S. Tsubota, R. M. Torres Sanchez, Catal. Today 29, 443 (1997)
[19] Ch. To?lkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80, 2877 (1998).
[20] N. Fr?my, V. Maurice, P. Marcus, J. Am. Ceram. Soc. 86, 669 (2003)
[20] R. Franchy, Surf. Sci. Reports 38, 195 (2000)
[21] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319, 95 (1994)
[22] M. S. Zei, C. S. Lin, W. H. Wen, C. I. Chiang, M. F. Luo, Surf. Sci. 600, 1942 (2006)
[23] H. Knozinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, VCH, Weinheim (1997).
[24] R. Franchy, J. Masuch, P. Gassmann, Appl. Surf. Sci. 93, 317 (1996)
[25] N. Fr?my, V. Maurice, P. Marcus, Surf. Interface Anal. 314, 519 (2002)
[26] R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396, 176 (1998)
[27] Ch. Ammon, A. Bayer, G. Held, B. Richter, Th. Schmidt, H.-P. Steinruck, Surf. Sci. 507-510, 845 (2002)
[28] B. A. Sexton, Surf. Sci. 88, 299 (1979)
Chapter 3
[1] H. L?th, Surfaces and Interfaces of Solids, Springer-Verlag, 1993
[2] User’s guide of RHK-UHV 300.
[3] 真空技術與應用, 行政院國家科學委員會精密儀器發展中心出版, 2002
[4] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)
[5] D. J. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992.
[6] J. Frenkel, Phys. Rev. 36, 1604 (1930)
[7] P. K. Hansma, J. Tersoff, J. Appl. Phys. 61 (2), R1 (1987)
[8] J. P. Iba, P. P. Bey, Jr., S. L. Brandow, R. A. Brizzolara, N. A. Burmham, D. P. Dilella, K. P. Lee, C. R. K. Marrian, R. J. Coiton, J. Vac. Sci. Technol. A 8 (4), 3570 (1990)
[9] J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons, 1997.
[10] Y. W. Yang, L. J. Fan, Langmuir 18, 1157-1164 (2002)
[11] S. Hofmann, In Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy, D. Briggs, M. P. Seah, Eds., John Wiley & Sons, 1990.
[12] R. P. Blum, H. Niehus, Appl. Phys. A 66, s529-s533 (1998)
[13] N. Fr?my, V. Maurice, P. Marcus, Surf. Interface Anal. 34, 519-523 (2002)
[14] M. F. Luo, C. I. Chiang, H. W. Shiu, S. D. Sartale, C. C. Kuo, Nanotechnology 17, 360-366 (2006)
[15] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319, 95 (1994)
Chapter4
[1] S. C. Parkar, A. W. Grant, V. A. Bondzie, C. T. Campbell, Surf. Sci. 441, 10 (1999)
[2] W. Song, M. Yoshitake, Appli. Surf. Sci. 241, 164 (2005)
[3] F. W. Chang, H. Y. Yu, L. S. Roselin, H. C. Yang, T. C. Ou, Appl. Catal. A 302, 157 (2006)
[4] P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva, T. Tabakova, J. Mol. Catal. A 213, 235 (2004)
[5] K. Luo, D. Y. Kim, D. W. Goodman, J. Mol. Catal. A 167, 191 (2001)
[6] D. M. Cox, B. Kessler, P. Fayet, W. Eberhardt, Z. Fu, D. Sondericher, R. Sherwood, A. Kaldor, Nanostructured Mater. 1, 161 (1992)
[7] S. P. Kowalczyk, G. Apai, G. Kaindl, F. R. McFeely, L. Ley, D. A. Shirley, Solid State Commun. 25, 847 (1978)
[8] M. Baumer, H. J. Freund, Prog. In Surf. Sci. 67, 127 (1999)
[9] M. F. Luo, C. I. Chiang, H. W. Shiu, S. D. Sartale, C. C. Kuo, Nanotechnology 17, 360 (2006)
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2006-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明