博碩士論文 93222009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.236.239.91
姓名 蘇郁涵(Yi-Han Su)  查詢紙本館藏   畢業系所 物理學系
論文名稱 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
(An AFM Study For Lithography and Dynamic Behaviors on Lipid Membranes)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface
★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces
★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長★ 在氧化鋁上成長金與白金的和金奈米粒子
★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用原子力顯微鏡(AFM)之探針以“機械式”的方法對在雲母片(mica)上厚度約12奈米高的脂質膜層做表面奈米蝕刻、以及以“電場式”方法對矽晶片(silicon wafer)與金表面上多種厚度之脂質膜層製造出表面奈米蝕刻。脂質膜是生物薄膜的主要成分,為軟物質的一種。在一個親水的基板上會因“自組性質”而自動排列成一個很均勻平整的薄膜,若使用原子力顯微鏡的接觸模式(contact mode)使探針接觸到或行走於脂質膜上,其探針作用於脂質膜上之作用力大小足以影響脂質膜之表面型態,例如針尖吸附脂質分子或刮開表面。因此我們可以控制探針之針尖軌跡與作用力大小來製作出奈米圖案。而另一種“電場式”的方法為在矽晶片上加上一個正偏壓,使得針尖與矽晶片間由於E=V/d之作用而產生強大的電場以及電流將通過脂質層,強大的電流可以加熱脂質分子使得具有高動能的分子離開矽晶片表面形成空洞而製造出圖形。
然而,在雲母片上形成的直線圖形不論是凹線或凸線並非呈靜止狀態而是會隨著時間發生長度變短而寬度變長、且面積約略相等的現象(觀測時間約數十分鐘至數小時)。我們於是利用此性質來模擬脂質膜之張力常數以及膜與雲母片間阻力係數比值(β/γ)相對於溫度的關係,並且得到β/γ值隨著溫度升高而變小。其表示圖形變化速率隨溫度增高而加快,我們因而推測其溫度升高使得脂質分子含有較大流動率,故β/γ增大。而我們也發現室溫下矽晶片上蝕刻產生的凹線圖案是不會隨時間而改變的。此現象表示脂質膜與雲母片間之阻力很小但與矽晶片間的阻力在室溫下卻大到足以阻止脂質膜移動。
摘要(英) Nanoscale-lithography was performed using AFM tips on lipid membranes of 12 nm thickness over mica through “mechanical method” and also on membranes of various thickness over silicon wafer through “electrostatic method”. Phospholipid is one of the main components of biological membranes, and also a kind of soft matter. Lipid molecules can assemble into extremely uniform thin films due to its “self-assembly” property. If we use the AFM tip in contact mode to touch or move over lipid membranes, the interaction between tip and membrane is strong enough to change the surface morphology. For example, the tip may absorb lipid molecules or scrape the membrane films. Therefore we can make nano-patterns by controlling the tip-membrane interaction and the tip’s trajectory. Besides, “electrostatic method” is an approach giving a bias voltage between the silicon wafer and the tip to enable a strong electric field as well as current passing through lipid membranes. The current causes Joule heating and that enables lipid molecules to be removed from the silicon wafer to form patterns.
However, the indentation straight line formed on membranes over mica is not static but evolves with time, such as length contaction as well as width expansion. However, the hole area remains approximately the same (The observation time is up to three hours). Hence we use the observation to derive the ratio of resistance between membrane and mica to membrane surface tension (β/γ). We find that the value of β/γ that depends on temperature decreases with temperature, which suggests that the resistance decreases with temperature. This is clue to the mobility increased as temperature was raised. Furthermore, we observed that the indentation lines on membrane of 12 nm thickness over the silicon wafer at room temperature are not deformed with time. This indicates that the resistance (β) is large enough to prevent from membrane movement at R.T.
關鍵字(中) ★ 脂質膜
★ 奈米蝕刻
★ 微影術
關鍵字(英) ★ lithography
★ lipid membrane
論文目次 Chapter1 Introduction……………………………..……………………….1
Chapter2 Literature review………………..……………………………….4
2.1 Nanolithography………………………………………………..4
2.1.1 Tip-induced oxidation lithography…………………………………4
2.1.2 Thermomechanical writing with an AFM tip………………………5
2.1.3 Electrostatic lithography on polymers by AFM……………………7
2.2 Concepts of lipids……………………………………………...11
2.2.1 Biological membranes…………………………………………….11
2.2.2 Structures and properties of phospholipids……………………….11
2.2.3 DPPC…………………………………………………………… ..14
2.2.4 Membrane formation……………………………………………...14
Chapter3 Experiment work………………….…………………………...16
3.1 Atomic force microscopy (AFM) system……………………..16
3.1.1 AFM principle…………………………………………………….16
3.1.2 AFM modes……………………………………………………….18
3.1.3 Experimental apparatus and system structure………….…………19
3.1.4 AFM tip and heater………………………………………………..23
3.2 Lipid membrane preparation………………………………...24
3.3 AFM measurement……………………………………………25
3.3.1 Lithography by “mechanically method”………………………25
3.3.2 Manipulate lipid vesicles………………………………………….25
3.3.3 Lithography by electrostatic method……………………………...25
Chapter4 Result & discussion…………..………………………………...27
4.1 Lithography by “mechanically method”…………………….27
4.1.1 Dot patterns……………………………………………………….27
4.1.2 Line patterns………………………………………………………29
4.2 Lithography by “electrostatic method”……………………...35
4.3 Manipulate vesicles by AFM tip……………………………...39
4.4 Dynamic behaviors on membranes and simulation…………40
4.4.1 Dynamics over mica………………………………………...40
4.4.2 Dynamics over silicon wafer………………………………..46
Chapter5 Conclusion…………..…………………………………………..50
Referenc………………………..…………………………………………….51
參考文獻 [1] M. F. Luo, Y. L. Yeh, P. L. Chen, C. H. Nien, and Y. W. Hsueh, J. Chem. Phys. 124, 194702 (2006)
[2] Ilya Reviakine and Alain Brisson, Langmuir 16, 1806 (2000)
[3] Deborah R. Fattal, David Andelman, and Avinoam Ben-Shaul, Langmuir 11, 1154 (1995)
[4] Fuyuki Tokumasu, Albert J. Jin, Gerald W. Feigenson, and James A. Dvorak, Biophys. J. 84, 2609 (2003)
[5] H. Lodish, A Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, L. Zipursky, and J. Darnell, Molecular Cell Biology, 5th ed. (Freeman and Co., New York, 2000)
[6] E. Sackmann, in Biophysics, edited by W. Hoppe. W. Lohmann, H. Markl, and H. Ziegler (1983).
[7] M. Wortis and E. Evans. Physics in Canada 53, 281 (1997)
[8] C. W. McConlogue and T. K. Vanderlick, Langmuir 13, 7158 (1997)
[9] A. Charier and F. Thibaudau, Biophys. J. 89, 1904 (2005)
[10] Jana Jass, Torbjörn Tjärnhage, and Gertrud Puu, Biophys. J. 79, 3153 (2000)
[11] The Future of Data Storage Technologies (International Technology Research Institute World Technology Division Report, Loyola, Maryland, 1999)
[12] Bae, Y. et al. Chem. Mater. 14, 1306 (2002)
[13] McCord, M. A. & Rocks, M. J., in Handbook of Microlithography 1, 139 (1997)
[14] Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A., Science 283, 661 (1999)
[15] Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H., Science 276, 1401 (1997)
[16] Lammertink, R. et al. Adv. Mater. 12, 98 (2000)
[17] Sergei F. Lyuksyutov, Richard A. Vaia, Pavel B. Paramonov, Shane Juhl, Lynn Waterhouse, Robert M. Ralich, Grigori Sigalov, and Erol Sancaktar, Nature 22, 468 (2003)
[18] Minhwan Lee,a) Ryan O’Hayre, Fritz B. Prinz, Turgut M. Gür, Appl. Phys. Lett. 85, 3552 (2004)
[19] Erik SchaÈ ffer, Thomas Thurn-Albrecht, Thomas P. Russell, and Ullrich Steiner, Nature 403, 874 (2000)
[20] Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, Chad A. Mirkin, Science 283, 661 (1999)
[21] Stephen Y. Chou, Lei Zhuang, and Linjie Guo, Appl. Phys. Lett. 75, 1004 (1999)
[22] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990)
[23] C.–F. Chen, S.-D. Tzeng, H.-Y. Chen, and S. Gwo, Optics Lett. 30, 652 (2005)
[24] C. Z. Cai, W. L. Wang, X. Y. Chen, and Q. Q. Shu, Mater. Phys. Mech. 4, 111 (2001)
[25] 陳威志,“以原子力顯微鏡於砷化鎵與氮化鎵表面進行局部氧化微影技術之研究”,(2003)
[26] H. J. Mamin and D. Rugar, Appl. Phys. Lett. 61, 1003 (1992)
[27] I. Reviakine and A. Brisson, Langmuir 16, 1806 (2000)
[28] J. Schmeider, Yves F. Dufrêne, William R. Barger, Jr., and Gil U. Lee, Biological Journal 79, 1107 (2000)
[29] T. Kaasgaard, C. Leidy, John H. Crowe, Ole G. Mourtisen and Kent Jorgensen, Biophysical Journal 85, 350 (2003)
[30] C. Leidy, T. Kaasgaard, John H. Crowe, Ole G. Biological Journal 83, 2625 (2002)
[31] M. Rappolt, G. Pabst, G. Rapp, M. Kriechaum, H. Amenitsch, C. Krenn, S. Bernstorff, P. Laggner, European Biophysical Journal 29, 125 (2000)
[32] Lewis, R. N. A. H. Mak, and R. N. McElhaney, Biochemistry 26, 6118 (1987)
[33] Deborah R. Fattal, D. A. Ben-Shaul, Langmuir 11, 1154 (1995)
[34] Robert B. Gennis, Biomembranes
[35] J. Jass, T. Tjärnhage, and G. Puu, Biophysical Journal 79, 3153 (2000)
[36] NT-MDT SPM Solver P47H Handbook
[37] F. Tokumasu, Albert J. Jin, Gerald W. Feigenson, and James A. Dvorak, Biological Journal 84, 2609 (2003)
指導教授 羅夢凡(M-F Luo) 審核日期 2006-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明