博碩士論文 93222020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.85.214.0
姓名 蔡五柳(Wu-Liou Tsai)  查詢紙本館藏   畢業系所 物理學系
論文名稱 介面膠體叢聚現象的理論研究
(Interfacial Colloid-Clusters)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究★ 膠體相圖之理論計算
★ 膠體、棒狀粒子混合系統之相圖的理論分析★ 利用時間序列的統計方法研究金屬叢集的動力學
★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性★ 金銅合金金屬叢集(N=38)的磁性性質研究
★ 膠體、盤狀粒子混合系統的兩階段動態相變區域★ 由超快速形狀辨識、時間序列分割、時間序列交互相關分析以及擴散理論方法研究蛋白質Transthyretin片斷與金屬叢集的分子動力學模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,各國際期刊陸續發表了許多關於膠體在二維介面上理論與實驗的相關研究。實驗上,發現膠體於介面上有穩定的叢聚形成,且膠體間具有長程的作用力。理論方面,眾說紛紜,探討長程作用的來源。歸納主要三種基本的作用力: (1)凡德瓦爾斯力(van der Waals force);(2)毛細張力(capillary force);(3)靜電力(electrostatic force)。由此三種作用力為出發點,並且利用基因演算法(Genetic Algorithm, GA)及Basin Hopping Method (BH)作雙重比較,尋求最低能量的結構。本論文預測的最穩定結構與實驗普遍觀測的結果相吻合,更試圖歸納整理二維叢集系統幾何結構的圖像描述方法。進一步,些微地改變膠體粒徑的分配(原本所有的膠體具有一樣的半徑),有趣的現象也一一出現了!
摘要(英) Recent experimental efforts on charged colloids trapped at the fluid/water interface have witnessed the formation of colloid-clusters. It was observed in these studies that the average inter-colloidal distance is surprisingly large on the order of approximately and often greater than 3 μm much farther than that in bulk colloidal dispersion. The mechanism giving rise to these mesoscopic structures remains an unclear puzzle unquestionably due to some kind of a long-range attractive force which is certainly not of van der Waals origin. In this work, we analyze theoretically the three main contributions, namely, the electrostatic (screened Yukawa and dipolar), van der Waals and capillary potentials, to the total energy of a two dimensional (2D) charged colloids spread on the fluid/water interface. Among them, we pay due attention to the capillary potential and consider it as a dominant source causing the long-range attraction. Realistically, we choose to study charged colloids possessing the same radius equal approximately to 10 μm and consult recent theoretical and experimental works for a reasonable estimation of other interfacial related quantities such as the charge of a surface colloid , Debye screening length,..etc which are indispensable in a colloid-cluster calculation. By appealing to two state-of-the-art optimization algorithms, we calculate the 2D colloid-clusters by searching their lowest energies. Our results show that the optimized total energies yield mesoscopic structures in close resemblance to surface colloid-clusters trappped at the fluid/water interface. Prevalently, we see primary clusetrs that include singlet, doublet, triplet and quadruplet occupying deeply in the cluster core center. For the range of cluster size studied here, we find, in particular, regularity in the growth pattern in three qualitative repeated sequences. As the number of colloids increases, we notice furthermore that the triangular and centered hexagonal clusters and their respective sequence are two common core clusters. Also, our predicted large clusters show tendency towards circular geometries similar to those observed experimentally.
關鍵字(中) ★ 基因演算法
★ 最佳化演算
★ 叢聚現象
★ 介面上的膠體
★ 魔術數字
關鍵字(英) ★ van der Waals force
★ capillary force
★ electrostatic force
★ genetic algorithm
★ basin-hopping
★ interfacial colloidal clusters
★ magic number
★ core-shell structures
論文目次 Chinese Abstract
Abstract
Preface
I. Introduction 1~4
II. Intercolloidal Interactions At The Air-Water Interface
A. van der Waals potential 4~5
B. Electrostatic potential: screening and dipolar parts 5~6
C. Capillary potential 6
III. Optimization Algorithm
A. Genetic algorithm 7~8
B. Basin hopping 8
IV. Numerical Results And Discussion 9~10
A. Monodisperse colloid-clusters 11~14
B. Bidisperse and tridisperse Colloid-Clusters 15~16
V. Conclusioin 16~17
References 17~19
Figure Captions 20~21
Tables 22~25
Figures 26~38
APPENDIXES
PART I
CAPILLARY FORCE BETWEEN COLLOIDS AT THE A/B
INTERFACE 39~48
PART II
ELECTROSTATIC FORCE BETWEEN COLLOIDS AT THE A/B
INTERFACE 49~65
PART III
THE GRADIENT OF THE INTERFACIAL COLLOIDAL
INTERACTION 66~71
PART IV
METHOD OF GENETIC ALGORITHM 72~76
PART V
METHOD OF BASIN HOPPING 77~81
PART VI
VAN DER WAALS FORCE BETWEEN COLLOIDS AT THE A/B
INTERFACE 82~95
References Of Appendixes 96
參考文獻 References Of Main Article:
1. J. M. Victor and J. P. Hansen, J. Chem. Soc., Faraday Trans. 81, 43 (1985).
2. S.K. Lai, W.P. Peng and G.F. Wang, Phys. Rev. E 63, 041511 (2001).
3. S.K. Lai and K.L. Wu, Phys. Rev. E 66, 041403 (2002).
4. V. Morales, J.A. Anta, and S. Lago, Langmuir 19, 475 (2003).
5. K.L. Wu and S.K. Lai, Langmuir 21, 3238 (2005).
6. E.J. Verwey and J.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
7. L. Belloni, J. Chem. Phys. 85, 519 (1986).
8. A. Kotera, K. Furusawa and K. Kubo, Kolloid Z. Z. Polym. 240, 837 (1970).
9. S. Hachisu, Crotica Chemica Acta 71, 975-981 (1998).
10. J.F. Stillinger, J. Chem. Phys. 35, 1584 (1961).
11. A. Hurd, J. Phys. A: Math. Gen. 18, L1055 (1985).
12. F. Mart?nez-L?pez, M.A. Cabrerizo-V?lchez and R. Hidalgo-?lvarez, J. Colloid and Interface Sci. 232, 303 (2000).
13. D.Y.C. Chan, J.D. Henry and L.R. White, J. Colloid Interface Sci. 79, 410 (1981).
14. P.A. Kralchevsky and N.D. Denkov, Curr. Opin. Colloid Interf. Sci. 6, 383 (2001).
15. V.S.J. Craig, B.W. Ninham and R.M. Pashley, Langmuir 15, 1562 (1999).
16. S. Bhattacharjee, C.H. Ko, and M. Elimelech, Langmuir 14, 3365 (1998).
17. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).
18. R. Kesavamoorthy, C.B. Rao and B. Raj, J. Phys.: Condens. Matter 5, 8805 (1993).
19. R.K. Kalia and P. Vashishta, J. Phys. C: Solid State Phys. 14, L643 (1981).
20. A. J. Armstrong, R. C. Mockler and W. J. O'Sullivan, J. Phys.: Condens. Matter 1, 1707 (1989).
21. J. Ruiz-Garcia, R. G?ez-Corrales and I. I. Boris, Physica A 236, 97 (1997).
22. G.Y. Onoda, Phys. Rev. Lett. 55, 226 ( 1985).
23. J. Ruiz-Garcia, R. G?ez-Corrales and B.I. Ivlev, Phys. Rev. E 58, 660 (1998).
24. M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay and D. A. Weitz, Nature (London) 420, 299 (2002).
25. L. Foret and A. W?rger, Phys. Rev. Lett. 92, 058302 (2004).
26. K. D. Danov, P. A. Kralchevsky, and M. P. Boneva, Langmuir 20, 6139 (2002).
27. M. Oettel, A. Dom?guez and S. Dietrich, J. Phys.: Condens. Matter 17, L337 (2005).
28. M. Oettel, A. Dom?guez and S. Dietrich, Phys. Rev. E 71, 051401 (2005).
29. M. Iwamatsu, J. Colloid and Interface Sci. 260, 305 (2003).
30. S.K. Lai, P.J. Hsu, K.L. Wu, W.K. Liu and M. Iwamatsu, J. Chem. Phys. 117, 10715 (2002).
31. P.J. Hsu and S.K. Lai, J. Chem. Phys. 124, 044711, (2006).
32. D.F. Williams and J.C. Berg, J. Colloid Interface Sci. 152, 218 (1992).
33. R. Tadmor, J. Phys.: Condens. Matter 13, L195 (2001).
34. M. Medina-Noyola and B.I. Ivlev, Phys. Rev. E 52, 6281 (1995).
35. F. Ghezzi and J.C. Earnshaw, J. Phys.: Condens. Matter 9, L517 (1997).
36. H.H. von Gr?nberg and E.C. Mbamala, J. Phys.: Condens. Matter 13, 4801 (2001).
37. E.C. Mbamala and H.H. von Gr?nberg, J. Phys.: Condens. Matter 14, 4881 (2002).
38. N.A. Besley, R.L. Johnson, A. J. Stace, and J. Uppenbrink, J. Mol. Phys. Structure (Theochem) 34, 75 (1995).
39. D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
40. J.A. Niesse and H.R. Mayne, J. Chem. Phys. 105, 4700 (1996).
41. Y. Zeiri, Phys. Rev. E 51, R2769 (1995).
42. Y. Zeiri, Chem. Phys. Lett. 261, 576 (1996).
43. Y. Zeiri, Computer Phys. Comm. 103, 28 (1997).
44. D.J. Wales and J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997).
45. Z. Li and H.A. Scheraga, Proc. Natl. Aca. Sci. USA 84, 6611 (1987).
46. F. Ghezzi, J. C. Earnshaw, M. Finnis and M. McCluney 238, 433 (2001).
47. D. Stamou and C. Duschl, Phys. Rev. E 62, 5263 (2000).
48. W. Chen, S.S. Tan, T.K. Ng, W.T. Ford, P. Tong, Phys. Rev. Lett. 95, 218301 (2005).
49. R. Aveyard, J.H. Clint, D. Nees and V. Paunov, Langmuir 16, 1969 (2000).
50. A.J. Hurd and D.W. Schaefer, Phys. Rev. Lett. 54, 1043 (1985).
51. D.J. Robinson and J.C. Earnshaw, Phys. Rev. A 46, 2045 (1992).
52. J. Ruiz-Garcia and B. Ivlev, Mol. Phys. 95, 371 (1998).
53. T. Watanabe, M. Shiga, K. Asai and K. Ishigure, Mol. Cryst. Liq. Cryst. 327, 135 (1999).
54. J.C. Fern?ndez-Toledano, A. Moncho-Jord?, F. Mart?nez-L?pez and R. Hidalgo-?lvarez, Langmuir 20, 6977 (2004).
55. D.J. Shaw, Introduction to Colloid and Surface Chemistry (Butterworth-Heinemann, Oxford, 1991).
56. B.K. Teo and N.J.A. Sloane, Inorg. Chem. 24, 4545 (1985).
57. M. E. Leunissen, C. G. Christova, Antti-Pekka Hynninen, C. P. Royall, A. I. Campbell, A. Imhof, M. Dijkstra, R. van Roij and A. van Blaaderen, Nature 437, 235 (2005).
58. E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien and C. B. Murray, Nature 439, 55 (2006).
59. A.-P. Hynninen, M. E. Leunissen, A. van Blaaderen, and M. Dijkstra, Phys. Rev. Lett. 96, 018303 (2006).
References Of Appendixes:
1. L. D. Landau and E. M. Lifshitz, Fluid Mechanics ( 2nd edition )
2. DYC : D. Y. C. Chen, J. Colloid And Interface Sci., 1980, 79, 410
3. F. H. Stillinger, JR., The Journal Of Chem. phys., 1961, 35, 1584
4. A. J. Hurd, J. Phys. A: Math. And Gener., 1985, 18, L1055
5. Abromowitz and Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ISBN: 0-486-61272-4
6. Watson
7. J. D. Jackson, Classical electrodynamics, ISBN: 0-471-30932-X
8. R. Tadmor, J. Phys.: Condens. Matter 2001, 13, L195
9. D. Liu and J. Nocedal, Math. Program. B 1989, 45, 503
10. S. K. Lai, P. J. Hsu and K. L. Wu, J. Chem. Phys. 2002, 117, 10715
11. M. Iwamatsu, J. Chem. Phys. 2000, 112, 10976
12. M. Iwamatsu,J. Colloid and Interface Sci. 2003, 260, 305
13. R. J. Johnston, Dalton Trans. 2003, 4193~4207
14. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, ISBN: 0-201-15767-5
15. Li, Z.; Scheraga, H. A., Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 6611
16. D. J. Wales, J. P. K. Doye, J. Phys. Chem. A 1997, 101, 5111
17. S. Yoo and X. C. Zeng, J. Chem. Phys. 2003, 119, 1442
18. R.J. Hunter, Foundations Of Colloid Science VOL. I, ISBN: 0-198-55187-8
19. M. Kleman, O. D. Lavrentovich, Soft Matter Physics An Introduction, ISBN: 0-387-95267-5
20. S. A. Safran, Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes ISBN: 0-201-62633-0
21. R. A. L. Jones, Soft Condensed Matter, ISBN: 0-19-850589-2
22. J. Israelachvili, Intermolecular & Surface Forces, ISBN: 0-12-375181-0
23. D. F. Williams and J. C. Berg, Journal Of Colloid And Interface Science, 1992, 152, 218
指導教授 賴山強(Shang-Kiang Lai) 審核日期 2006-5-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明