博碩士論文 93222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.238.194.166
姓名 陳岱沂(Dai-yi Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 離子通道電流漲落的非線性行為
(Nonlinear Stochastic Effect of Ion Channels on Current Fluctuations)
相關論文
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 黏菌之運動模型研究★ 亞精胺影響下DNA構形與DNA碎片分佈之研究
★ DNA在微通道的熱泳行為★ 溫度及鈣動力學對離體心臟心率之影響
★ 非線性控制方法來抑制離體心臟中心跳強弱交替的現象與溫度和心臟收縮的力對心律變異性的影響★ Thermo-diffusiophoresis and their Thermodynamics
★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors★ Effects of periodic and sustained stretching on cardiac culture
★ 在外加振盪磁場中阻尼磁針的非線性動力學分析★ 控制單一神經元的發放時間
★ 非線性調控對心臟分岔現象的影響★ 神經膠細胞對於神經網路同步爆發之影響
★ A Study of Synchronized Burst Mechanisms in Neuronal Cultures★ The Effects of Sustain Stretching and Compression in the Inter-beat Interval and Beat Rate Variability of Embryonic Cardiomyocytes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自然界有很多非線性系統,在某些情況下,外加雜訊可以增強訊號傳導或偵測,這樣的理論稱為隨機共振(Stochastic Resonance). 目前已知大至冰河期週期預測,小至人眼視覺觀測,小腦平衡,螯蝦對於水流的偵測都發現這樣的現象,但在分子層次還未知。離子通道是存在細胞膜上的蛋白,其在神經訊號傳遞及細胞膜電位的穩定中扮演舉足輕重的角色,人體許多疾病也大多來自某種離子通道或受體失調,我們想知道類似的現象(stochastic resonance)會否在這樣的尺度看見。
經由微注射的方法把外來的RNA注射到南非爪蟾的卵內,經過一段時間(約一天),卵的膜表面就會佈滿離子通道蛋白,再藉由電生理(electrophysiology)的方法來量測離子通道開合的活動,因為本實驗所使用的離子通道為電壓依賴型(voltage-dependent),即可改變其細胞膜電位來控制其開啟或關閉,配合電位箝制的方法來量測通過離子通道電流之漲落。結果分析顯示外加雜訊的確能夠增強離子通道的訊噪比(signal-to-noise ratio),且隨機共振的現象也可觀測到,暗示了外加雜訊的確可影響離子通道電導(conductance)的可能性。
摘要(英) The addition of noise to a system can enhance its ability of signal detection at some optimal noise level. This phenomenon, called stochastic resonance, is widely studied over the past two decades and observed in many fields including physics, chemistry, engineering, medicine and biology. However, the existence of stochastic resonance in the molecular level, the ion channel, still remains open. In this study, the ion channels of the cells are under investigation. Xenopus oocytes are injected with various concentrations of messenger RNA to express the ion channels over the membrane of the oocytes. The over-expressed ion channels used in our experiments are the Shaker-IR potassium channels, which are voltage-dependent ion channels. They can generally switch between different conformational states with voltage-dependent transition rates. The activities of the ion channels are recorded by the patch clamping technique. Data analysis shows qualitatively results that external random noise will enhance the efficiency of current transduction of the ion channels.
關鍵字(中) ★ 隨機共振
★ 電生理
★ 離子通道
關鍵字(英) ★ stochastic resonance
★ patch clamp
★ Xenopus oocyte
★ ion channel
論文目次 Abstract ……………………………………………………………………….……Ⅱ
Acknowledgement ………………………………………………………Ⅲ
Contents ………………………………………………………….…………………Ⅳ
List of figures ………………………………………..…………………………... Ⅵ
1 Chapter 1 Introduction ……………………………….……………………..…. 1
1.1 Introduction
1.1.1 What is stochastic resonance ………………..…………………………… 1
1.1.2 How to characterize stochastic resonance …..…………………………… 2
1.2 Stochastic resonance in natural world
1.2.1 SR in sensory biology and animal behavior …..……………….………… 4
1.2.2 SR in human hearing …………………………..……………….………... 7
1.2.3 SR in human balancing experiments …………..……………….………... 7
1.2.4 SR in mammalian neuronal networks …………..…………………..……. 8
1.3 Voltage-gated ion channels ……………………………..……………..……….. 9
1.3.1 The Nernst potential ………………………………..……………..……… 9
1.3.2 Ion channels and voltage-gated ion channels ………..……………..……. 10
1.3.3 The Shaker potassium channel ………………………..……………..…... 10
1.3.4 The Hodgkin and Huxley model ………………………..……………..… 12
1.4 The approaches and the purpose ………………………………..……………... 15
2 Chapter 2 Material and Method …………………………………….......……. 16
2.1 Electrophysiology ………………………………………………..………..…... 16
2.1.1 How electrophysiology works …..………………………………..……... 17
2.1.2 Cell-attached and inside-out patch configuration ……..…………..…….. 19
2.1.3 Experimental setup ……………………………………..…………......… 22
2.2 Expression of Shaker K+ channels ………………………………………….… 24
2.3 Fabrication of glasspipettes …………………………………………..……...... 27
2.4 Recording procedures …………………………………………………..……... 28
2.5 External drives ………………………………………………………………… 29
2.6 Noise reduction …………………………………………………..……………. 30
2.7 Summary …………………………………………………………..…………... 31
3 Chapter 3 Results and Discussion ……….……………………...…………… 32
Overview ………………………………………….……………………………….. 32
3.1 Recording procedure and calibration ………….………………………………. 33
3.2 Current fluctuations to different external drives ….………………………….... 43
3.3 Numerical simulations …………………………….…………………………... 49
4 Chapter 4 Summary ……………………………..……………………….…….. 58
4.1 The SR phenomenon is useful in the signal transduction in biology ………….. 58
4.2 The SR phenomenon is checked in the ion channel level ….………………….. 58
4.3 The Xenopus oocyte is a good system for the single-type ion channel investigation……………………………………………………………………..58
4.4 The SNR shows qualitatively SR phenomenon ……………………….……..... 59
5 Reference …………………………………………………………………..…….. 60
6 Appendix ……..………………………………………….……………………….. 63
參考文獻 [1] Benzi, R., Sutera, S. & Vulpiani, the mechanism of stochastic resonance, A. J. Phys. A 14, L453-457, 1981
[2] L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev.Mon.Phy. vol. 70, no. 1, 223-287, 1998
[3] P. Hanggi, stochastic resonance in biology, ChemPhysChem 3, 285-290, 2002
[4] F. Moss, Stochastic resonance and sensory information processing: a tutorial and review of application, Clinical Neurophysiology 115, 267-281, 2004
[5] D.F. Russell, L.A. Wilkens, F. Moss, Use of behavioural stochastic resonance by paddle fish for feeding, Nature 402, 291-294, 1999
[6] J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance, Nature 365, 337-340, 1993
[7] J.E. Levin, J.P. Miller, Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance, Nature 380, 165-168, 1996
[8] F. Jaramillo, K. Wiesenfeld, Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system, Nature Neuroscience, vol. 1, no. 5, 384-388, 1998
[9] F.G. Zeng, Q.J. Fu, R. Morse, Human hearing enhanced by Noise, Brain Research 869: 251-255, 2000
[10] A.A. Priplata, B.L. Patritti, J.B. Niemi, R. Hughes, D.C. Gravelle, L.A. Lipsitz, A. Veves, J. Stein, P. Bonato, and J.J. Collins, Noise-enhanced balance control in patients with diabetes and patients with strokes, Annals of Neurology, vol. 59, no. 1, 4-12, 2006
[11] B.J. Gluckman, T.I. Netoff, E.J. Neel, W.L. Ditto, M.L. Spano, S.J. Schiff, Stochastic resonance in a neuronal network from mammalian brain, PRL 77, 4098-4101, 1996
[12] Sergey M. Bezrukov and Igor Vodyanoy, Noise-induced enhancement of signal transduction across voltage-dependent ion channels, Nature 378:362-364, 1995
[13] Igor Goychuk and Peter Hanggi, Stochastic resonance in ion channels characterized by information theory, PRE 61:4272-4280, 2000
[14] T. Hoshinori, W.N. Zagotta, R.W. Aldrich, Biophysical and Molecular Mechanisms of Shaker Potassium Channel Inactivation, Science 250, 533-538, 1990
[15] G. Yellen, M.E. Jurman, T. Abramson, R. Mackinnon, Mutations affecting Internal TEA Blockade identify the probable Pore-Forming region of a K+ channel, Science 251:939-942, 1991
[16] S. Marom, H. Salman, V. Lyakhov, E. Braun, Effects of Density and Gating of Delayed-Rectifier Potassium Channels on Resting Membrane Potential and its Fluctuations, J. Membrane Biol. 154, 267-274, 1996
[17] H. Salman, Y. Soen, E. Braun, Voltage Fluctuations and Collective Effects in Ion-Channel protein ensembles, PRL 77:4458-4461, 1996
[18] H. Salman and E. Braun, Voltage dynamics of single-type voltage-gated ion-channel protein ensembles, PRE 56:852-864, 1997
[19] O. Sokolova, L. Kolmakova-Partensky and N. Grigorieff, Three-Dimensinal Structure of a voltage-gated potassium channel at 2.5nm resolution, Structure 9:215-220, 2001
[20] O. Sokolova, A. Accardi, D. Gutierrez, A. Lau, M. Rigney and N. Grigorieff, Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvβ2-subunit, PNAS 100, 22:12607-12612, 2003
[21] A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117:500-544, 1952
[22] R. D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait and R. Mackinnon, The Structure of the Potassium channel: Molecular basis of K+ Conduction and Selectivity, Science 280:69-77, 1998
[23] Bertil Hille, Ion Channels of Excitable Membranes, 3rd edition, Sinauer Associates, Inc. Sunderland, Massachusettes, U.S.A., 2001
[24] Francisco Bezanilla, Voltage-gated ion channels, IEEE Trans. Nano.Bio.Sci 4, 1:34-48, 2005.
[25] Igor Goychuk and Peter Hanggi, Ion channel gating: A first-passage time analysis of the Kramers type, PNAS 99, 6:3552-3556, 2002
[26] Single-Channel Recording, edited by B. Sakmann and E. Neher, 2nd edition, Plenum Press, New York and London, 1995
[27] A. Molleman, Patch Clamping, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2003
[28] The Axon Guide for Electrophysiology & Biophysics Laboratory Techniques, edited by R. Sherman-Gold, Axon Instrument Inc., U.S.A., 1993
[29] Gurdon JB, Lane CD, Woodland HR, Marbix G, Use of Frog eggs and oocytes for the study of messenger RNA and its translation in living cells, Nature 233, 177-182, 1971
[30] Wolf-Michael Weber, Ion currents of Xenopus lavies oocytes: state of the art, Biochimica et Biophysica Acta 1421: 213-233, 1999
[31] M. Laine, M.A. Lin, John P.A. Bannister, William R. Silverman, Allan F. Mock, B. Roux, and Diane M. Papazian, Atomic Proximity between S4 segment and Pore domain in Shaker Potassium channels, Neuron 39:467-481, 2003
指導教授 陳志強(Chi-Keung Chan) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明