博碩士論文 93223020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.215.182.36
姓名 許長勝(Chang-Sheng Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 HIV融合抑制物之作用機制研究
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類免疫缺乏病毒入侵人體的過程中,病毒的套膜醣蛋白扮演一個很重要的角色,而這個醣蛋白是由gp41和gp120這兩個具有非共價性連結的子蛋白所組成。在表面子蛋白gp120與輔助T細胞上的CD4受器和一些輔助受器結合後,導致穿膜子蛋白gp41構形上的重大改變,而造成gp41形成一三髮夾的結構核心,進而達到病毒與目標細胞的融合。當gp120分離且gp41並未摺合成三髮夾結構核心時的中間狀態,是為愛滋病毒融合抑制藥物的作用目標。目標是和gp41之CHR區域,或是NHR之三寡聚合物螺旋coiled-coil核心結構發生結合反應,以阻斷可造成細胞融合之三寡聚合物髮夾結構的形成。
從gp41裸露於細胞膜外之胺基酸序列所得到一些胜?,能夠有效的抑制愛滋病毒的融合,其中的一些胜?:T-20 (aa. 638-673)、T-649 (aa. 628-663),被發現於某一條件下具有較低的溶解度且於溶液中呈均勻渾濁高光散射度的狀態。但當加入包含gp41N-terminal區域(NHR)某ㄧ胺基酸序列時可造成T-20、T-649渾濁度的減少而變得澄清。利用此簡單方法與渾濁度的變化可找出gp41N-terminal區域重要胺基酸序列為何。由一系列選自gp41N-terminal區域且部份胺基酸序列重疊的方式,發現胺基酸片段LLSGIV是與取自於CHR的T-20、T-649的主要作用區域,而在NHR胺基酸序列567-573為一次要作用區域。
另外由表面電漿子共振所得到的結合能力數據,NHR的LLSGIV區段對T-20、T-649具有最大的結合能力;此外尚有一接近T-649疏水性口袋的次要的作用區域,這些數據與渾濁度實驗的結論相符合。因此,由以上實驗所得到的結果,我們可以推論出NHR的LLSGIV及QLTVWGI區段對於與CHR摺合成三寡聚合物髮夾結構是很重要的;同時可以知道T-649較T-20對gp41N-terminal區域擁有較強之反應能力,這也暗示T-649具有較佳的抗HIV能力。
摘要(英) The envelope glycoprotein of human immunodeficiency virus type I (HIV-1) plays an important role in viral entry and consists of two non-covalently associated subunits, gp120 and gp41. The surface subunit gp120 is responsible for virus attachment and it binds to CD4 and a chemokine coreceptor. Consequently, gp41 undergoes conformational changes, leading to trimeric hairpin structure core, and achieves fusion between virus and target cell. The pre-hairpin intermediate of gp41 is the target for fusion inhibitors that bind to the C-terminal heptad repeat region or the trimeric coiled-coil of NHR helices and prevent formation of the fusogenic trimeric hairpin structure.
A number of peptides derived from the membrane proximal region of gp41 ectodomain are found to be effective fusion inhibitors. Two of them, T-20 (aa. 638-673) and T-649 (aa. 628-663), were found disordered and sparingly soluble in water but became clear upon mixing with structured peptides from the N-terminal heptad repeat (NHR) region using a simple method of reduction in the scattering of T-20 and T-649 suspension. From the results on mapping the locus of interaction with T-20 and T-649 by using partially overlapping peptides derived from NHR, it was included that the LLSGIV region was the major docking site and a minor docking site around aa. 567-573 was found.
The binding affinity data measured by surface plasmon resonance (SPR) also showed a maximum around the LLSGIV segment for the two fusion inhibitors and a less prominent binding region near the hydrophobic pocket for T-649. These results imply that the two segments of NHR are important to the formation of trimeric hairpin structure and T-649 has better antiviral ability than T-20.
論文目次 章節目錄
中文摘要 i
英文摘要 iii
章節目錄 iv
圖表目錄
vi
名詞縮寫及胺基酸序列對照表 viii
第 一 章 序 論
1.1愛滋病的歷史 1
1.2 HIV的生命週期 2
1.3愛滋病的治療 3
1.4 gp41構形之改變及其抑制 5
第 二 章 原理簡介
2.1 胜?合成 15
2.2 表面電漿子共振原理 16
2.3 Biacore之光學原理 19
2.4 Biacore感應圖(sensorgram)之介紹 19
2.5 Biacore之基本組成 20
第 三 章 實驗方法
3.1胜?樣品製備 29
3.2 Resin的Cleavage 31
3.3 HPLC純化 32
3.4渾濁度澄清分析(Turbidity clearance assay) 33
3.5表面電漿子共振分析(SPR assay) 34
第 四 章 實驗結果
4.1渾濁度澄清分析(Turbidity clearance assay) 36
4.2表面電漿子共振分析(SPR assay) 38
第 五 章 討 論
5.1 HR1之重要作用位置尋找 47
5.2 HR1-HR2的bi-model binding model作用機制 49
參考文獻 54
附錄 62
參考文獻 1. Armand-Ug?n, M., A. Guti?rrez, B. Clotet, J. A. Est?. (2003). HIV-1 resistance to the gp41-dependent fusion inhibitor C-34. Antiviral Res. 59, 137-142.
2. Blacklow, S. C., Lu, M., and Kim, P. S. (1995). A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry 34, 14955-14962.
3. Caffrey, M., Cai, M., Kaufman, J., Stahl, S. J., Wingfield, P. T., Covell, D. G., and Clore, G. M. (1998). Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J. 17, 4572-4584.
4. Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S. (1997). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263-273.
5. Chan, D. C., and Kim, P. S. (1998). HIV entry and its inhibition. Cell 93, 681-684.
6. Chang, D. K., S. F. Cheng, V. D. Trivedi. (1999). Biophysical characterization of the structure of the amino-terminal region of gp41 of HIV-1: implications on viral fusion mechanism. J. Biol. Chem. 274, 5299-5309.
7. Chang, D. K.; S. F. Cheng, S. H. Yang. (2000). A helix initiation motif, XLLRA, is stabilized by hydrogen bond, hydrophobic and van der Waals interactions. Biochim. Biophys. Acta. 1478, 39-50.
8. Derdeyn, C. A., J. M. Decker, J. N. Sfakianos, Z. Zhang, W. A. O'Brien, L. Ratner, G. M. Shaw, and E. Hunter. (2001). Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J. Virol. 75, 8605-8614.
9. Dimitrov, D. S. (1997). How do viruses enter cells? The HIV coreceptors teach us a lesson of complexity. Cell 91, 721-730.
10. Delwart, E. L., Mosialos, G., and Gilmore, T. (1990). Retroviral envelope glycoproteins contain a "leucine zipper"-like repeat. AIDS Res. Hum. Retroviruses 6, 703-706.
11. Desmaris, F., Lemaire, D., Ricard-Blum, S., Chatrenet, B., and Forest, E. (2005). Structural characterization of the feline-immunodeficiency-virus envelope glycoprotein 36 ectodomain for the development of new antivirals. Biochem. J. 389, 559-567.
12. Dwyer, J. J., A. Hasan, K.L. Wilson, J. M. White, T. J. Matthews, and M. K. Delmedico.(2003). The hydrophobic pocket contributes to the structural stability of the N-terminal coiled coil of HIV gp41 but is not required for six-helix bundle formation. Biochemistry, 42, 4945-4953.
13. Freed, E., Myers, D., and Risser, R. (1990). Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc. Natl. Acad. Sci. USA 87, 4650-4654.
14. Furuta, R. A., Wild, C. T., Weng, Y., and Weiss, C. D. (1998). Capture of an early fusion-active conformation of HIV-1 gp41. Nat. Struct. Biol. 5, 276-279.
15. Gallaher, W. R., Ball, J. M., Garry, R. F., Griffin, M. C., and Montelaro, R. C. (1989). A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res. Hum. Retroviruses 5, 431-440.
16. Gomes, P., Giralt, E., and Andreu, D. (2000). Surface plasmon resonance screening of synthetic peptides mimicking the immunodominant region of C-S8c1 foot-and-mouth disease virus. Vaccine 18, 362-370.
17. Heil, M. L., J. M. Decker, J. N. Sfakianos, G. M. Shaw, E. Hunter, and C. A. Derdeyn. (2004). Determinants of human immunodeficiency virus type 1 baseline susceptibility to the fusion inhibitors enfuvirtide and T-649 reside outside the peptide interaction site. J. Virol. 78, 7582-7589.
18. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G., and White, J. M. (1996). Virus-cell and cell-cell fusion. Annu. Rev. Cell. Dev. Biol. 12, 627-661.
19. Hunter, E., and Swanstrom, R. (1990). Retrovirus envelope glycoproteins. Curr. Top. Microbiol. Immunol. 157, 187-253.
20. Jiang, S., Lin, K., Strick, N., and Neurath, A. R. (1993a). Inhibition of HIV-1 infection by a fusion domain binding peptide from the HIV-1 envelope glycoprotein gp41. Biochem. Biophys. Res. Commun. 195, 533-538.
21. Jiang, S., Lin, K., Strick, N., and Neurath, A. R. (1993b). HIV-1 inhibition by a peptide. Nature 365, 113.
22. Kliger, Y., Gallo, S. A., Peisajovich, S. G., Munoz-Barroso, I., Avkin, S., Blumenthal, R., and Shai, Y. (2001). Mode of action of an antiviral peptide from HIV-1. J. Biol. Chem. 276, 1391-1397.
23. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W.A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648-659.
24. Lawless, M. K., Barney, S., Guthrie, K. I., Bucy, T. B., Petteway, S. R., Jr., and Merutka, G. (1996). HIV-1 membrane fusion mechanism: structural studies of the interactions between biologically-active peptides from gp41. Biochemistry 35, 13697-13708.
25. Lalezari, J. P., Bellos, N. C., Sathasivam, K., Richmond, G. J., Cohen, C. J., Myers, Jr., R. A., Henry, D. H., Raskino, C., Melby, T., Murchison, H., Zhang, Y., Spence, R., Greenberg, M. L., DeMasi, R.A., and Deego Miralles, G. (2005). T-1249 Retains Potent Antiretroviral Activity in Patients Who Had Experienced Virological Failure while on an Enfuvirtide-Containing Treatment Regimen. J. Infect Dis. 191, 1155-1163.
26. Lohrengel, S., F. Hermann, I. Hagmann, H. Oberwinkler, L. Scrivano, C. Hoffmann, C., D. von Laer, and M. T. Dittmar. (2005). Determinants of human immunodeficiency virus type 1 resistance to membrane-anchored gp41-derived peptides. J. Virol. 79, 10237-10246.
27. Lu, M., Blacklow, S. C., and Kim, P. S. (1995). A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat. Struct. Biol. 2, 1075-1082.
28. Lu, M., Ji, H., and Shen, S. (1999). Subdomain folding and biological activity of the core structure from human immunodeficiency virus type 1 gp41: Implications for viral membrane fusion. J. Virol. 73, 4433-4438.
29. Luciw, P. A. (1996) Fields Virolog, Lippincott-raven Publishers, Philadelphia, PA, USA, pp. 1881-1952.
30. Moore, J. P., Jameson, B. A., Weiss, R. A. and Sattentau, Q. J. (1993) Viral fusion mechnisum, CRC Press, Inc., Boca Raton, Fla., USA, pp. 233-289.
31. Matthews, T. J., M. Salgo, M. Greenberg, J. Chung, R. DeMasi, and D. Bolognesi. (2004). Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discov. 3, 215-225.
32. Nameki, C., Kodama, E., Ikeuchi, M., Mabuchi, N., Otaka, A., Tamamura, H., Ohno, M., Fujii, N., and Matsuoka, M. (2005). Mutations conferring resistance to human immunodeficiency virus type 1 fusion inhibitors are restricted by gp41 and Rev-responsive element functions. J. Virol. 79, 764-770.
33. Reeves, J. D., F. H. Lee, J. L. Miamidian, C. B. Jabara, M. M. Juntilla, and R. W. Doms. (2005). Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J. Virol. 79, 4991-4999.
34. Rizzuto, C. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Henderickson, W. A., and Sodroski, J. (1998). A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280, 1949-1953.
35. Rimsky, L. T., Shugars, D. C., and Matthews, T. J. (1998). Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J. Virol. 72, 986-993.
36. Salome´ Veiga, A., Santos, N. C., Loura, L. M. S., Fedorov, A., and Castanho, M. A. R. B. (2004). HIV fusion inhibitor peptide T-1249 is able to insert or adsorb to lipidic bilayers. Putative correlation with improved efficiency. J. Am. Chem. Soc. 126, 14758-14763.
37. Schneider, S. E., Bray, B. L., Mader, C. J., Friedrich, P. E., Anderson, M. W., Taylor, T. S., Boshernitzan, N., Niemi, T. E., Fulcher, B. C., Whight, S.R., White, J. M., Greene, R. J., Stoltenberg, L. E., and Lichty, M. (2005). Development of HIV fusion inhibitors. J. Peptide Sci. 11, 744–753.
38. Tan, K., Liu, J., Wang, J., Shen, S., and Lu, M. (1997). Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc. Natl. Acad. Sci. USA, 94, 12303-12308.
39. Trivedi, V. D., S. F. Cheng, C. W. Wu, R. Karthikeyan, C. J. Chen, and D. K. Chang. (2003). The LLSGIV stretch of the N-terminal region of HIV-1 gp41 is critical for binding to a model peptide, T20. Protein Eng. 16, 311-317.
40. Tseng, M. C., and Chu, Y. H. (2005). Using surface plasmon resonance to directly identify molecules in a tripeptide library that bind tightly to a vancomycin chip. Anal. Chem. 336, 172-177.
41. Wei, X., J. M. Decker, H. Liu, Z. Zhang, R. B. Arani, J. M. Kilby, M. S. Saag, X. Wu, G.M. Shaw, and J. C. Kappes. (2002). Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob. Agents Chemother. 46, 1896-1905.
42. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., and Wiley, D. C. (1997). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426-430.
43. White, J., Kielian, M., and Helenius, A. (1983). Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 16, 151-195.
44. White, J.M. (1992). Membrane fusion. Science 258, 917-924.
45. Wild, C., Greenwell, T., Shugars, D., Rimsky-Clarke, L., and Matthews, T. (1995). The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res. And Human Retroviruses 11, 323-325.
46. Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B., and Matthews, T. J. (1994) Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Nat. Acad. Sci. USA 91, 9770-9774.
47. Wiley, D. C., and Skehel, J. J. (1987). The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56, 365-394.
48. Yang, Z.-N., Mueser, T. C., Kaufman, J., Stahl, S. J., Wingfield, P. T., and Hyde, C. C. (1999). The Crystal Structure of the SIV gp41 Ectodomain at 1.47 ? Resolution. J. Struct. Biol. 126, 131-144.
指導教授 張定國、蔡惠旭
(Ding-Kwo Chang、Hui-Hsu Gavin Tsai)
審核日期 2006-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明