博碩士論文 93223054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.189.180.244
姓名 王凱儀(Kai-Yi Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 奈米粒子結合親和質譜術應用於人體血漿的多樣性免疫分析方法
(Nanoprobe-Based Affinity Mass Spectrometry for Multiplexed Immunoassay in Human Plasma)
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究
★ 新型含1,2,3-三氮唑之雙光子吸收材料的合成及其光學性質探討★ 紫質衍生物研究:間位苯卟啉分子的鋅離子感測及大環紫質的構型
★ Squamocin 之合成研究★ 發展4,4’-亞甲基對苯胺或聯苯胺為骨架的四氯衍生物作為人類麩胺基硫轉移酶抑制劑的合成及構效關係的探討
★ 含有香豆素的石膽酸類似物作為唾液酸轉移酶抑制劑的合成與初步活性測試★ 石膽酸C4含氟唾液酸轉移酶抑制劑和苯並惡嗪酮相關的螢光探針之合成及生物研究
★ 合成和優化2-(1-乙基-3,5-二甲基-1H-吡唑-4-基)乙-1-胺衍生物和其抗三陰性乳腺癌細胞的體外活性研究★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑
★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome★ 從手性N-亞磺醯胺進行非對映選擇性磷酯基化反應建構高度選擇性的α-胺基磷酸酯
★ DNA型式碳水化合物抗原之生物偵測器的開發及應用★ 合成具有分子腳架之多並苯化合物且用於自組裝分子薄膜之研究
★ 1,3-偶極環化加成反應在藥物合成與醣晶片上的應用★ 平面化寡聚萘分子之合成及其光學、電學性 質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類血液是最常被使用於臨床診斷的體液樣本。某些存在於血液中與疾病相關的特定蛋白質,其濃度變化或是結構上的改變,被視為疾病發展的重要指標。由於疾病發生機制和發展過程十分複雜,單一的蛋白質檢測法通常無法提供足夠的檢驗特異度(specificity)。發展多樣性檢測方法(multiplexed assay)除了可以提高檢測的特異度外,同時也縮短了分析時間、減少試劑的使用量,並且降低樣品的需求量。然而,血液中蛋白質的廣大濃度分布範圍,造成了發展多樣性分析上的困難。
在本篇論文中,我們發展了結合磁性奈米粒子和質譜分析技術(NBAMS)的多樣性免疫分析方法,利用表面結合有抗體的磁性奈米粒子自人類血漿中同時萃取並濃縮三種疾病相關蛋白質:C-反應蛋白質(C-reactive protein, CRP)、血清澱粉蛋白P(serum amyloid P component, SAP)和血清澱粉蛋白A(serum amyloid A, SAA),後,再結合具有高靈敏度的基質輔助雷射脫附游離飛行時間質譜儀進行樣品偵測。實驗結果顯示,此多樣性免疫分析方法能夠同時從血漿中純化出標的蛋白質,且能夠同時對多樣的標的蛋白質進行定量分析。以正常人、進行心導管手術或胃癌病人血清為樣品的實驗結果,顯示可根據所測得的相對蛋白質含量,對上述三類不同人體生理狀況進行區分。
藉著在奈米粒子表面可容易修飾不同性質的官能基或分子、低成本和操作上的簡易性並結合高靈敏度的質譜分析技術,這個多樣性免疫分析方法極有潛力可應用於臨床蛋白質體診斷上。
摘要(英) Human plasma is the most used specimen for diagnosis where the level and/or modification of some specific proteins are associated with the progression of disease. Because of the complex nature of disease, diagnosis using single protein assay often results in insufficient detection specificity. The development and application of a multiplexed assay provide advantages of reduced analytical time, lower cost of reagents and smaller sampling quantity. Unfortunately, the high protein content of plasma is present across an extraordinary dynamic range of concentration that is likely to span more than 1012, which result in analytical challenge.
Recent success of mass spectrometry in clinic proteomics has shown the ability to screen and discover multiple biomarkers simultaneously that increases the sensitivity and specificity of disease diagnosis. We have developed a multiplexed immunoassay based on nanoprobe-based affinity mass spectrometry (NBAMS) to specifically isolate, preconcentrate, and characterize several disease-associated antigens in plasma simultaneously. To demonstrate the availability of the approach, three serum proteins, C-reactive protein (CRP), serum amyloid P component (SAP), and serum amyloid A (SAA) with different concentrations are chosen as model system. Based on the antibody-antigen interaction, antibody-conjugated magnetic nanoparticles (MNPs), a-CRP MNPs, a-SAP MNPs, and a-SAA MNPs, can be used as the affinity probe to specifically extract antigens from plasma and quantitativly analyze multiple proteins. When applying this multiplex assay to human plasma analysis, distinct pattern of the protein profile can be used to differentiate healthy controls, patients with surgical operation of cardiac catheter, and gastric cancer patients.
Given the flexibility of manipulating functional groups on the nanoparticles, their low cost, and simplicity of the assay, this technique is capable for clinical proteomic diagnosis.
關鍵字(中) ★ 親和質譜術
★ 奈米粒子
關鍵字(英) ★ mass spectrometry
★ multiplexed immunoassay
★ nanoprobe
論文目次 Table of Content
Page
Chinese Abstract ……………………………………………………….. Ⅰ
Abstract ………………………………………………………………… Ⅲ
Acknowledgment ………………………………………………………. Ⅴ
List of Figures ………………………………………………………….. Ⅷ
Nonstandard Abbreviations …………………………………………….. Ⅹ
Chapter 1: Introduction ………………………………………………… 1
1-1. Clinic Proteomics ……………………………………………….. 1
1-1.1. Plasma in Clinic Diagnostic ……………………………… 2
1-1.2. Multiparameter Indicator …………………………………. 4
1-2. Affinity Detection ………………………………………………. 5
1-2.1. Protein Array ……………………………………………….. 6
1-2.2. Mass Spectrometry ………………………………………… 7
1-2.2.1. MALDI ..………………………………………………... 7
1-2.2.2. TOF ……..………………………………………………. 9
1-2.2.3. MALDI-TOF Mass Spectrometer …...………………….. 10
1-2.2.4. Affinity Mass Spectrometry ..………………………… 11
1-3. Biomolecular Nanotechnology …………………………………. 13
1-3.1. Nanoscale Affinity Probe …….…………………………….13
1-4. Purpose …………………………………………………………. 15
1-5. Disease-Related Proteins ………………………………………..15
1-5.1. Acute Phase Response ……………………………………... 15
1-5.2. Overview of Targeted Proteins …………………………….16
1-5.2.1. Sereum amyloid A protein ………..…………………….16
1-5.2.2. C-reactive protein ……..……………………………….16
1-5.2.3. Serum amyloid P component …..………………………..17
Chapter 2: Experiment …...…………………………………………….. 18
2-1. Materials ..………………………………………………………. 18
2-1.1. Chemicals and Materials …………………………………… 18
2-1.2. Synthesis of Antibody-Conjugated Magnetic Nanoparticles 18
2-1.3. Human Plasma Preparation ………………………………… 19
2-2. Instrument ………………………………………………………. 20
2-3. Method ………………………………………………………….. 20
2-3.1. Matrix Selection ……………………………………….…… 20
2-3.2. Determination of Spectra Acquisition Method .………. 21
2-3.3. Immunoaffinity Extraction …...…………………………. 21
2-3.4. Optimization of NBAMS for Single Targeted Protein Assay.22
2-3.4.1. Test of Specificity and MEG blocking ….……………22
2-3.4.2. Sensitivity ……..………………………………………..22
2-3.5. Optimization of NBAMS for Multiplex Analysis …………22
2-3.5.1. Specificity ..……………………………………………..22
2-3.5.2. Sensitivity ……..………………………………………..23
2-3.5.3. Dynamic Range of Quantitative Analysis …………...23
2-3.5.4. Concentration Effect in Multiplex Detection …... 23
2-3.5.5. Response Curve for Multiplex Quantification …..…24
2-3.5.6. Human Plasma Analysis …………..……………………. 24
Chapter 3: Results and Discussion ……………………………………..26
3-1. Optimization of MALDI-TOF MS Detection ………………….. 26
3-1.1. Matrix Selection …………………………………………… 26
3-1.2. Spectra Acquisition ………………………………………… 28
3-2. Optimization of Nanoprobe-Based Affinity Mass
Spectrometry Immunoassay …...……………………………….. 29
3-2.1. Specificity ………………………………………………….. 30
3-2.2. Sensitivity ………………………………………………….. 32
3-3. Multiplexed Immunoassay for Detection of SAA, CRP, and SAP 34
3-3.1. Specificity ………………………………………………….. 35
3-3.2. Sensitivity …...……………………………………………..36
3-3.3. Dynamic Range of Quantitative Analysis ……...……… 37
3-3.4. Concentration Effect in Multiplex Detection …...…. 40
3-3.5. Response Curve for Multiplex Quantification …...……42
3-3.6. Human Plasma Analysis …...………………………………. 45
Chapter 4: Conclusion ………………………………………………….. 47
Figures ………………………………………………………………….. 49
References…...………………………………………………………... 72
Appendix A …...………………………………………………………... 81
Appendix B .....…………………………………………………………. 82
參考文獻 Reference
1. Stein, L. D., Human genome: End of the beginning. Nature 2004, 431, 915-916.
2. Consortium, I. H. G. S., Finishing the euchromatic sequence of the human genome. Nature 2004, 431, 931-945.
3. Rosenblatt, K. P.; Bryant-Greenwood, P.; Killian, J. K.; Mehta, A.; Geho, D.; Espina, V.; III, E. F. P.; Liotta, L. A., Serum proteomics in cancer diagnosis and management. Annual Review of Medicine 2004, 55, 97-112.
4. MacNeil, J. S., Better biomarker for the diagnostics labyrinth. Genome Technol. 2004, 24-33.
5. Alaiya, A.; Al-Mohanna, M.; Linder, S., Clinical cancer proteomics: promises and pitfalls. Journal of Proteome Research 2005, 4, 1213-1222.
6. Srinivas, P. R.; Verma, M.; Zhao, Y.; Srivastava, S., Proteomics for cancer biomarker discovery. Clinical Chemistry 2002, 48, 1160-1169.
7. Ludwig, J. A.; Weinstein, J. N., Biomarkers in cancer staging, prognosis and treatment selection. Nature Reviews Cancer 2005, 5, 845-856.
8. Lundblad, R. L., Considerations for the use of blood plasma and serum for proteomic analysis. The Internet Journal of Gastroenterology 2005, 1.
9. Anderson, N. L.; Anderson, N. G., The Human Plasma Proteome: history, character, and diagnostic prospect. Molecular & Cellular Proteomics 2002, 1, 845-867.
10. Hernández, J.; Thompson, I. M., Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker. Cancer 2004, 101, 894-904.
11. Pavlenko, M.; Roos, A. K.; Lundqvist, A.; Palmborg, A.; Miller, A. M.; Ozenci, V.; Bergman, B.; Egevad, L.; Hellström, M.; Kiessling, R.; Masucci, G.; Wersäll, P.; Nilsson, S.; Pisa, P., A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. The British Journal of Cancer 2004, 91, 688-694.
12. Bruix, J.; Sherman, M.; Llovet, J. M.; Beaugrand, M.; Lencioni, R.; Burroughs, A. K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodes, J., Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL Conference. Journal of Hepatology 2001, 35, 421-430.
13. Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R., Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 9390-9395.
14. Adkins, J. N.; Varnum, S. M.; Auberry, K. J.; Moore, R. J.; Angell, N. H.; Smith, R. D.; Springer, D. L.; Pounds, J. G., Toward a Human Blood Serum Proteome Analysis By Multidimensional Separation Coupled With Mass Spectrometry. Molecular & Cellular Proteomics 2002, 1, 947-955.
15. Katz, J. E.; Mallick, P.; Agus, D. B., A perspective on protein profiling of blood. BJU international 2005, 96, 477-482.
16. Tirumalai, R. S.; Chan, K. C.; Prieto, D. A.; Issaq, H. J.; Conrads, T. P.; Veenstra, T. D., Characterization of the Low Molecular Weight Human Serum Proteome. Molecular & Cellular Proteomics 2003, 2, 1096-1103.
17. Pepys, M. B.; Hirschfield, G. M., C-reactive protein: a critical update. THe Journal of Clinical Investigation 2003, 111, 1805-1812.
18. Sanchez, J.-C.; Corthals, G. L.; Hochstrasser, D. F., Biomedical applications of proteomics. ed.; Wiley-VCH: 2004; p 1-4.
19. Xiao, Z.; Prieto, D.; Conrads, T. P.; Veenstra, T. D.; Issaq, H. J., Proteomic patterns: their potential for disease diagnosis. Molecular and Cellular Endocrinology 2005, 230, 95-106.
20. Liotta, L.; Petricoin, E., Molecular profiling of human cancer. Nature Reviews Genetics 2000, 1, 48-56.
21. Brawer, M. K., Prostate-specific antigen: current status. CA: a cancer journal for clinicians 1999, 49, 264-281.
22. Etzioni, R.; Urban, N.; Ramsey, S.; McIntosh, M.; Schwartz, S.; Reid, B.; Radich, J.; Anderson, G.; Hartwell, L., The case for early detection. Nature Reviews Cancer 2003, 3, 1-10.
23. Zhang, Z.; Robert C. Bast, J.; Yu, Y.; Li, J.; Sokoll, L. J.; Rai, A. J.; Rosenzweig, J. M.; Cameron, B.; Wang, Y. Y.; Meng, X.-Y.; Berchuck, A.; Haaften-Day, C. v.; Hacker, N. F.; Bruijn, H. W. A. d.; Zee, A. G. J. v. d.; acobs, I. J. J.; Fung, E. T.; Chan, D. W., Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Research 2004, 64, 5882-5890.
24. Manne, U.; Srivastava, R.-G.; Srivastava, S., Recent advances in biomarkers for cancer diagnosis and treatment. Drug Discovery Today 2005, 10, 965-976.
25. Stoss, O.; Henkel, T., Biomedical marker molecules for cancer - current status and perspectives. Drug Discovery Today: Targets 2004, 3, 228-237.
26. Etzioni, R.; Urban, N.; Ramsey, S.; McIntosh, M.; Schwartz, S.; Reid, B.; Radich, J.; Anderson, G.; Hartwell, L., Early detection: The case for early detection. Nature Reviews Cancer 2003, 3, 243-252.
27. Chen, C.-S.; Zhu, H., Protein microarrays. BioTechniques 2006, 40, 423-429.
28. Stillman, B. A.; Tonkinson, J. L., Fast slides: a novel surface for microarrays. BioTechniques 2000, 29, 630-635.
29. Wildt, R. M. T. d.; Mundy, C. R.; D.Gorick, B.; Tomlinson, I. M., Antibody arrays for high-throughput screening of antibody-antigen interactions. Nature Biotechnology 2000, 18, 989-994.
30. Afanassiev, V.; Hanemann, V.; Wölfl, S., Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Research 2000, 28, E66.
31. Guschin, D.; Yershov, G.; Zaslavsky, A.; Gemmell, A.; Shick, V.; Proudnikov, D.; Arenkov, P.; Mirzabekov, A., Manual manufacturing of oligonucleotide, DNA, and protein microchips. Analytical Biochemistry 1997, 250, 203-211.
32. MacBeath, G.; Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760-1763.
33. Joos, T. O.; Schrenk, M.; Höpfl, P.; Kröger, K.; Chowdhury, U.; Stoll, D.; Schörner, D.; Dürr, M.; Herick, K.; Rupp, S.; Sohn, K.; Hämmerle, H., A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 2000, 21, 2641-2650.
34. Mendoza, L. G.; McQuary, P.; Mongan, A.; Gangadharan, R.; Brignac, S.; Eggers, M., High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). BioTechniques 1999, 27, 778-788.
35. Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.; Gerstein, M.; Snyder, M., Global analysis of protein activities using proteome chips. Science 2001, 293, 2101-2105.
36. Kingsmore, S. F., Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nature Reviews Drug Discovery 2006, 5, 310-321.
37. Robinson, W. H.; DiGennaro, C.; Hueber, W.; Haab, B. B.; Kamachi, M.; Dean, E. J.; Fournel, S.; Fong, D.; Genovese, M. C.; Vegvar, H. E. N. d.; Skriner, K.; Hirschberg, D. L.; Morris, R. I.; Muller, S.; Pruijn, G. J.; Venrooij, W. J. v.; Smolen, J. S.; Brown, P. O.; Steinman, L.; Utz, P. J., Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Medicine 2002, 8, 295-301.
38. Sreekumar, A.; Nyati, M. K.; Varambally, S.; Barrette, T. R.; Ghosh, D.; Lawrence, T. S.; Chinnaiyan, A. M., Profiling of cancer cells using protein macroarrays: discovery of novel radiation-regulated proteins. Cancer Research 2001, 61, 7585-7593.
39. Nettikadan, S.; Radke, K.; Johnson, J.; Xu, J.; Lynch, M.; Mosher, C.; Henderson, E., Detection and quantification of protein biomarkers from fewer than 10 cells. Molecular & Cellular Proteomics 2006, 5, 895-901.
40. Janzi, M.; Ödling, J.; Pan-Hammarström, Q.; Sundberg, M.; Lundeberg, J.; Uhlén, M.; Hammarström, L.; Nilsson, P., Serum microarrays for large scale screening of protein levels. Molecular & Cellular Proteomics 2005, 4, 1942-1947.
41. Phizicky, E.; Bastiaens, P. I. H.; Zhu, H.; Synder, M.; Fields, S., Protein analysis on a proteomic scale. Nature 2003, 422, 208-215.
42. Schweitzer, B.; Kingsmore, S. F., Measuring proteins on microarrays. Current Opinion in Biotechnology 2002, 13, 14-19.
43. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64-71.
44. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid communications in mass spectrometry 1988, 2, 151-153.
45. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988, 60, 2299-2301.
46. III, J. R. Y., Mass spectrometry and the age of the proteome. Journal of Mass Spectrometry 1998, 33, 1-19.
47. Nielen, M. W. F., Maldi time-of-flight mass spectrometry of synthetic polymers. Mass Spectrometry Reviews 1999, 18, 309-344.
48. Hanton, S. D., Mass Spectrometry of Polymers and Polymer Surfaces. Chemical reviews 2001, 101, 527-569.
49. Karas, M.; Bachmann, D.; Hillenkamp, F., Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57, 2935-2939.
50. Karas, M.; Gluckmann, M.; Schafer, J., Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. Journal of Mass Spectrometry 2000, 35, 1-12.
51. Strupat, K., Molecular Weight Determination of Peptides and Proteins by ESI and MALDI. Methods in enzymology 2005, 405, 1-36.
52. Herbert, C. G.; Johnstone, R. A. W., Mass Spectrometry Basics. ed.; CRC: 2002; p.
53. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical Chemistry 1991, 63, 1193A-1203A.
54. McLuckey, S. A.; Wells, J. M., Mass Analysis at the Advent of the 21st Century. Chemical reviews 2001, 101, 571-606.
55. Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C., Identifying Proteins from Two-Dimensional Gels by Molecular Mass Searching of Peptide Fragments in Protein Sequence Databases. Proceedings of the National Academy of Sciences of the United States of America 1993, 90, 5011-5015.
56. Aebersold, R.; Goodlett, D. R., Mass Spectrometry in Proteomics. Chemical reviews 2001, 101, 269-295.
57. Xu, Y.; Bruening, M. L.; Watson, J. T., Non-specific, on-probe cleanup methods for MALDI-MS samples. Mass Spectrometry Reviews 2003, 22, 429-440.
58. Gilar, M.; Bouvier, E. S. P.; Compton, B. J., Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods. Journal of Chromatography A 2001, 909, 111-135.
59. Tang, N.; Tornatore, P.; Weinberger, S. R., Current developments in SELDI affinity technology. Mass Spectrometry Reviews 2004, 23, 34-44.
60. Bundy, J.; Fenselau, C., Lectin-based affinity capture for MALDI-MS analysis of bacteria. Analytical Chemistry 1999, 71, 1460-1463.
61. L.Bundy, J.; Fenselau, C., Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms. Analytical Chemistry 2001, 73, 751-757.
62. Papac, D. I.; Hoyes, J.; Tomer, K. B., Direct analysis of affinity-bound analytes by MALDI/TOF MS. Analytical Chemistry 1994, 66, 2609-2613.
63. Brockman, A. H.; Orlando, R., Probe-immobilized affinity chromtography/mass spectrometry. Analytical Chemistry 1995, 67, 4581-4585.
64. Brockman, A. H.; Orlando, R., New immobilization chemistry for probe affinity mass spectrometry. Rapid Communications in Mass Spectrometry 1996, 10, 1688-1692.
65. Liang, X.; Lubman, D. M., On-probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 1998, 70, 498-503.
66. Nelson, R. W.; Krome, J. R.; Bieber, A. L.; Williams, P., Mass spectrometri immunoassay. Analytical Chemistry 1995, 67, 1153-1158.
67. Kiernan, U. A.; Tubbs, K. A.; Gruber, K.; Nedelkov, D.; Niederkofler, E. E.; Williams, P.; Nelson, R. W., High-throughput protein characterization using mass spectrometric immunoassay. Analytical Biochemistry 2002, 301, 49-56.
68. Kiernan, U. A.; Nedelkov, D.; Tubbs, K. A.; Niederkofler, E. E.; Nelson, R. W., Selected expression profiling of full-length proteins and their variants in human plasma. Clinical Proteomics Journal 2004, 1, 7-16.
69. Wang, R.; Sweeney, D.; Gandy, S. E.; Sisodia, S. S., The profile of soluble amyloid protein in cultured cell media: detection and quantification of amyloid protein and variants by immunoprecipitation-mass sprctrometry. The Journal of Biological Chemistry 1996, 271, 31894-31902.
70. Neubert, H.; Jacoby, E. S.; Bansal, S. S.; Iles, R. K.; Cowan, D. A.; Kicman, A. T., Enhanced affinity capture MALDI-TOF MS: orientation of a immunoglobulin G using recombinant protein G. Analytical Chemistry 2002, 74, 3677-3683.
71. Madonna, A. J.; Cuyk, S. V.; Voorhees, K. J., Detection of Escherichia coli using immunomagnetic separation and dacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 2003, 17, 257-263.
72. Hutchens, T. W.; Yip, T.-T., New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Communications in Mass Spectrometry 1993, 7, 576-580.
73. Katz, J. E.; Mllick, P.; Agus, D. B., Aprespective on protein profiling of blood. BJU International 2005, 96, 477-482.
74. Merchant, M.; Weinberger, S. R., Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000, 21, 1164-1167.
75. Zhu, W.; Wang, X.; Ma, Y.; Rao, M.; Glimm, J.; Kovach, J. S., Detection of cancer-specific markers amid massive mass spectral data. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 14666-14671.
76. Donald J. Johann, J.; Mcguigan, M. D.; Patel, A. R.; Tomov, S.; Ross, S.; Conrads, T. P.; Veenstra, T. D.; Fishman, D. A.; Whiteley, G. R.; Emanuel F. Petricoin, I.; Liotta, L. A., Clinical proteomics and biomarker discovery. Annals New York Academy of Sciences 2004, 1022, 295-305.
77. Guo, J.; Yang, E. C. C.; DeSouza, L.; Diehl, G.; Rodrigues, M. J.; Romaschin, A. D.; Colgan, T. J.; Siu, K. W. M., A strategy for high-resolution protein identification in surface-enhanced laser desorption/ionization mass spectrometry: Calgranulin A and chaperonin 10 as protein markers for endometrial carcinoma. Proteomics 2005, 5, 1953-1966.
78. Rosenblatt, K. P.; Bryant-Greenwood, P.; Killian, J. K.; Mehta, A.; Geho, D.; Espina, V.; III, E. F. P.; Liotta, L. A., Serum proteomics in cancer diagnosis and management. Annual Review of Medicine 2004, 55, 97-112.
79. Issaq, H. J.; Conrads, T. P.; Prieto, D. A.; Tirumalai, R.; Veenstra, T. D., SELDI-TOF MS for diagnostic proteomics. Analytical Chemistry 2003, 149A-155A.
80. Diamandis, E. P., Mass spectrometry as a diagnostic and a cancer biomarker discovery tool. Molecular & Cellular Proteomics 2004, 3, 367-378.
81. Henderson, N. A.; Steele, R. J. C., SELDI-TOF proteomic analysis and cancer detection. Surgeon 2005, 1, 383-390.
82. Jr, B. C. V.; Bonventre, J. V.; Hsu, S. I.-H., Towards the application of proteomics in real disease diagnosis. Clinical Science 2005, 109, 421-430.
83. Guerrera, I. C.; Kleiner, O., Application of Mass Spectrometry in Proteomics. Bioscience Reports 2005, 25, 71-93.
84. Moore, A., Brave small word. European Molecular Biology Organization 2001, 2, 86-88.
85. Niemeyer, C. M., Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angewandte Chemie 2001, 40, 4128-4158.
86. Zhang, C.; Zhang, Z.; Yu, B.; Shi, J.; Zhang, X., Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Analytical Chemistry 2002, 74, 96-99.
87. Ho, K.-C.; Tsai, P.-J.; Lin, Y.-S.; Chen, Y.-C., Using biofunctionalized nanoparticles to probe pathogenic bacteria. Analytical Chemistry 2004, 76, 7162-7168.
88. Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L., A whole blood immunoassay using gold nanoshells. Analytical Chemistry 2003, 75, 2377-2381.
89. Chen, Y.-J.; Chen, S.-H.; Chien, Y.-Y.; Chang, Y.-W.; Liao, H.-K.; Chang, C.-Y.; Jan, M.-D.; Wang, K.-T.; Lin, C.-C., Carbohydrate-encapsulated gold nanopaarticles for rapid target-protein identification and binding-epitope mapping. ChemBioChem 2005, 6, 1169-1173.
90. Gupta, A. K.; Gupta, M., Synthesis nd surface engineering of iron oxide nanoparticles for biomedical application. Biomaterials 2005, 26, 3995-4021.
91. Bucak, S.; Jones, D. A.; Laibinis, P. E.; Hatton, T. A., Protein separation using colloidal magnetic nanoparticles. Biotechnology Progress 2003, 19, 477-484.
92. Gu, H.; Ho, P.-L.; Tsang, K. W. T.; Wang, L.; Xu, B., Using biofunctional magnetic nanoparticles to cpturevancomysin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Journal of the American Chemical Society 2003, 125, 15702-15703.
93. Gu, H.; Ho, P.-L.; Tsang, K. W.; Yu, C.-W.; Xu, B., Using biofunctional magnetic nanoprticles to capture Gram-negative bacteria at an ultra-low concentration. Chemical Communications 2003, 1966-1967.
94. Lin, Y.-S.; Tsai, P.-J.; Weng, M.-F.; Chen, Y.-C., Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Analytical Chemistry 2005, 77, 1753-1760.
95. Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Lin, P.-C.; Her, G.-R.; Lai, A. C.-Y.; Chen, J.-H.; Lin, C.-C.; Chen, Y.-J., Nanoprobe-bsed affinity mass spectrometry for selected protein profiling in human plasma. Analytical Chemistry 2005, 77, 5990-5997.
96. Lin, P.-C.; Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Wang, K.-Y.; Chen, Y.-J.; Lin, C.-C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
97. Kriz, K.; Ibraimi, F.; Lu, M.; Hansson, L.-O.; Kriz, D., Detection of C-reactive protein utilizing magnetic permeability detection based immunoassay. Analytical Chemistry 2005, 77, 5920-5924.
98. Herr, J. K.; Smith, J. E.; Medley, C. D.; Shangguan, D.; Tan, W., Aptamer-conjugated nanoparticles for selective collection and detection of cancer cell. Analytical Chemistry 2006, 78, 2918-2924.
99. Kong, X. L.; Huang, L. C. L.; Hsu, C.-M.; Chen, W.-H.; Han, C.-C.; Chang, H.-C., High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Analytical Chemistry 2005, 77, 259-265.
100. Xu, H.; Aylott, J. W.; Kopelman, R.; Miller, T. J.; Philbert, M. A., A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Analytical Chemistry 2001, 73, 4124-4133.
101. Chen, C.-T.; Chen, Y.-C., Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 2005, 77, 5912-5919.
102. Pepys, M. B.; Baltz, M. L., Acute phase proteins with special reference to C-rective protein and related proteins (pentaxins) and serum amyloid A protein. Advances in Immunology 1983, 34, 141-212.
103. Liang, J.-S.; Sloane, J. A.; Wells., J. M.; Abraham, C. R.; Fine, R. E.; Sipe, J. D., Evidence for local production of acute phase response apolipoprotein serum amyloid A in Alzheimer's disease brain. Neuroscience Letters 1997, 225, 73-76.
104. Kiernan, U. A.; Tubbs, K. A.; Nedelkov, D.; Niederkofler, E. E.; Nelson, R. W., Detection of novel truncated forms of human serum amylid A protein in human plasma. FEBS Letters 2003, 537, 166-170.
105. Thompson, D.; Pepys, M. B.; Tickle, I.; Wood, S., The structures of crystalline complexes of human serum amyloid P component with its carbohydrate ligand, the cyclic pyruvate cetal of galactose. Journal of Molecular Biology 2002, 320, 1081-1086.
106. Hutchinson, W. L.; Hohenester, E.; Pepys, M. B., Human serum amyloid Pcomponent is a single uncomplexed pentamer in whole serum. Molecular Medicine 2000, 6, 482-493.
107. Pepys, M. B.; Dash, A. C.; Markham, R. E.; Thomas, H. C.; Williams, B. D.; Petrie, A., Comprative clinical study of protein SAP (amyloid P component) and C-reactive protein in serum. Clinical and Experimental Immunology 1978, 32, 119-124.
108. Pepys, M. B.; Herbert, J.; Hutchinson, W. L.; Tennent, G. A.; Lachmann, H. J.; Gallimore, J. R.; Lovat, L. B.; Bartfai, T.; Alanine, A.; Hertel, C.; Hoffmann, T.; Jakob-Roetne, R.; Norcross, R. D.; Kemp, J. A.; Yamamura, K.; Suzaki, M.; Taylor, G. W.; Murray, S.; Thompson, D.; Purvis, A.; Kolstoe, S.; Wood, S. P.; Hawkins, P. N., Tatgeted pharmacological depletion of serum amyloid P component for treatmant of human amyloidosis. Nature 2002, 417, 254-259.
109. Kiernan, U. A.; Tubbs, K. A.; Nedelkov, D.; Niederkofler, E. E.; Nelson, R. W., Detection of novel truncated forms of human serum amyloid A protein in human plasma. FEBS Letters 2003, 537, 166-170.
110. Pizzini, C.; Mussap, M.; Plebani, M.; Fanos, V., C-reactive protein and serum amyloid A protein in neonatal infections. Scandinavian Journal of Infectious Diseases 2000, 32, 229-235.
111. Jin, Y.; Manabe, T., Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry. Electrophoresis 2005, 26, 2823-2834.
指導教授 陳玉如、侯敦仁
(Yu-Ju Chen、Duen-Ren Hou)
審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明