博碩士論文 93224007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.210.213
姓名 桂妤(Yu Kuei)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 一個雙重功能的酵母菌 tRNA 合成酶之研究
(Study of a bifunctional yeast tRNA synthetase of Candida albicans)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在 Saccharomyces cerevisiae 中, ALA1 可以同時解碼細胞質與粒線體的 alanyl-tRNA synthetase (AlaRS)。此一基因利用最靠近 mRNA 5’端的 AUG (即 AUG1) 轉譯出細胞質異構型,利用 AUG 1 上游的兩個重複密碼 ACG (-25) 與 ACG (-24) 轉譯出粒線體異構型。本論文中,我們選殖了 Candida albicans 的 ALA1 基因 (CaALA1),並針對這個基因的蛋白質轉譯及細胞內分布做進一步的研究,我們發現 CaALA1 可以同時取代 S. cerevisiae ALA1 基因的細胞質與粒線體功能,然而其基因表達的方式卻非常不同。首先我們發現 CaALA1 只轉錄一條 mRNA ,其 5’端位於 AUG1 上游的 24 個核苷酸處。再者, CaALA1 是利用其 mRNA 上的 AUG1 轉譯出一個同時具有粒線體與細胞質功能的蛋白質,而利用與 AUG1 相距八個密碼的 AUG9 轉譯出一個只具有細胞質功能的蛋白質異構型。進一步將此細胞的細胞質及粒線體分離,結果發現由 AUG1 做出的蛋白質可同時分布於細胞質及粒線體,相對地,由 AUG9 做出的蛋白質則只分布於細胞質,此結果與功能性分析完全一致。點突變的實驗結果顯示 CaALA1 的轉譯可能是透過 Leaky scanning 的方式進行,因此改變 AUG1 的週邊序列不但會影響 AUG1 的轉譯起始效率,也會影響 AUG9 的效率。據我們所知,這是在酵母菌中發現的第一個例子:一個 tRNA synthetase 可以同時跑到兩個不同的胞器中作用。
摘要(英) It was previously shown that the cytoplasmic and mitochondrial activities of alanyl-tRNA synthetase of Saccharomyces cerevisiae are provided by two translational products of ALA1, one initiates at the AUG codon closest to the 5’-end of its mRNA transcripts and the other at upstream in-frame redundant non-AUG codons (i. e., ACG(-25) and ACG(-24)). In this thesis, we report the cloning and characterization of a homologous gene from Candida albicans. Functional assays show that this gene can substitute for both the cytoplasmic and mitochondrial functions of ALA1 in S. cerevisiae; however, several points regarding the pattern of gene expression differ from mechanisms used to regulate expression of ScALA1. First, the results of 5’-RACE showed expression of only a single transcript whose 5’-end mapped to nucleotide position -24 relative to ATG1. However, this single transcript codes for two distinct protein isoforms through alternative initiation from two in-frame AUG triplets 8 codons apart. Complementation assays showed that the AUG1-initiated protein can complement for both cytoplasmic and mitochondrial activities of ScALA1, while the AUG9-initiated protein functions only in the cytoplasm. Fractionation assays also showed that the AUG1-initiated protein form can be partitioned in both compartments; however, the AUG9-initiated protein form was exclusively confined to the cytoplasm. Next, we tested whether the mechanism used by CaALA1 to initiate translation was due to “leaky scanning”. Therefore, a series of point mutations were introduced into the sequence context surrounding the first initiator. Results showed that the efficiencies of translation initiation by the two initiators could be influenced by changing the sequence context of AUG1, consistent with the leaky scanning model of translation initiation. To our knowledge, this appears to be the first example in yeast wherein a naturally occurring form of a tRNA synthetase can play roles in both compartments.
關鍵字(中) ★ 雙功能
★ tRNA合成酶
★ 酵母菌
關鍵字(英) ★ Candida albicans
★ bifunctional
★ alanyl-tRNA synthetase
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖表目錄 VI
縮寫檢索表 VII
第一章 緒論 1
1. Aminoacyl-tRNA synthetase (aaRS) 的簡介 1
2. 原核與真核細胞在轉譯方式上的差異 1
3. 少數的真核細胞 aaRS 只有一個細胞核基因 2
4. 比較 S. cerevisiae 與 Candida albicans 之間 AlaRS 蛋白質表現差異4
5. 真核細胞的轉譯機制4
6. 研究目的5
第二章 材料與方法 6
1. 使用之菌株、載體及培養基 6
2. 大腸桿菌勝任細胞的製備與轉型作用 6
3. 酵母菌勝任細胞的製備與轉型作用 8
4. 質體之選殖 9
5. 鑑定 CaALA1 mRNA 的 5’端 10
6. 點突變 (Site-directed Mutagenesis) 13
7. 功能性互補試驗 (Complementation ) —測試細胞質功能 14
8. 功能性互補試驗 (Complementation ) —測試粒線體功能 15
9. 蛋白質製備 (Protein Preparation) 17
10. SDS-PAGE之蛋白質分子量分析 18
11. 西方氏點墨法 (Western blotting) 19
12. 酵母菌粒線體的分離 (Enrichment of mitochondria) 20
第三章 結果 22
1. CaALA1 基因序列的分析 22
2. CaALA1 具有細胞質與粒線體雙重功能 23
3. CaALA1 可由不同的轉譯起始點合成兩個蛋白質異構型 24
4. CaAlaRS 在細胞中的分布情形 25
5. 比較 AUG1 與 AUG9 的轉譯起始效率 28
6. 以回報基因分析 CaAlaRS 的合成方式 28
7. 週邊序列影響轉譯起始點的效率 29
第四章 討論 32
1. CaALA1 為一個雙重功能基因 32
2. 一個 CaAlaRS 異構型可以同時作用於兩個胞器 33
3. 粒線體基質胜??切割效率的探討 34
4. 酵母菌 Leaky scanning 的探討 35
第五章 參考文獻 37
圖表 41
附錄 58
參考文獻 Abramczyk, D., Tchorzewski, M., Grankowski, N. (2003) Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast 12: 1045-1052
Burbaum, J. J., Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266:16965-8.
Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279: 13778-13785
Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Chiu, M. I., Mason, T. L., Fink, G. R. (1992) HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation. Genetics. 132: 987-1001
Cigan, A. M., Donahue, T. F. (1987) Sequence and structural features associated with translational initiator regions in yeast. Gene 59(1): 1-18.
Daum, G., Bohni, P. C., Schatz, G. (1982) Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257:13028-33.
Dircks, L. K., Poyton, R. O. (1990) Overexpression of a leaderless form of yeast cytochrome c oxidase subunit Va circumvents the requirement for a leader peptide in mitochondrial import. Mol Cell Biol. 10:4984-6.
Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
Gakh, O., Cavadini, P., Isaya, G. (2002) Mitochondrial processing peptidases. Biochim Biophys Acta. 1592: 63-77.
Gieg?, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035.
Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080.
Kozak, M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305
Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.
Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J. 16: 2482-92
Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
Mar?chal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Cell. Biol. 8: 115-131.
Martinis, S. A., Schimmel, P. (1993) Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs required for specificity. J. Biol. Chem. 268: 6069-72.
Mirande, M. (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 40:95-142.
Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. Plant Cell 8: 1027-1039
Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci. 24: 34-36
Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Neupert, W. (1997) Protein import into mitochondria. Annu Rev Biochem. 66: 863-917.
Peeters, N., and Small, I. (2001) Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta 1541: 54–63
Ribas de Pouplana, L., Turner, R. J., Steer, B. A., Schimmel, P. (1998) Genetic code origins: tRNAs older than their synthetases? Proc Natl Acad Sci U S A. 95: 11295-300.
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
Sass, E., Blachinsky, E., Karniely, S., and Pines, O. (2001) Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J. Biol. Chem. 276: 46111-46117
Sass, E., Karniely, S., and Pines, O. (2003) Folding of fumarase during mitochondrial import determines its dual targeting in yeast. J. Biol. Chem. 278: 45109-45116
Schimmel, P., R. and Soll, D. (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 48:601-48.
Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
Slusher, L. B., Gillman, E. C., Martin, N. C., and Hopper, A. K. (1991) mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc. Natl. Acad. Sci. USA 88: 9789-9793
Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854.
Strobel, G., Zollner, A., Angermayr, M., and Bandlow, W. (2002) Competition of Spontaneous Protein Folding and Mitochondrial Import Causes Dual Subcellular Location of Major Adenylate Kinase. Mol. Biol. Cell 13: 1439–1448
Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J. Biol. Chem. 279: 49656-63
Turner, R. J., Lovato, M., Schimmel, P. (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 275: 7681-8.
Tzagoloff, A., Vambutas, A., and Akai, A. (1989) Characterization of MSM1, the structural gene for yeast mitochondrial methionyl-tRNA synthetase. Eur. J. Biochem. 179: 365–371.
Tzagoloff, A., Gatti, D., Gampel, A. (1990) Mitochondrial aminoacyl-tRNA synthetases. Prog Nucleic Acid Res Mol Biol. 39:129-58.
Wang, C. C., Chang, K. J., Tang, H. L., Hsieh, C. J., Schimmel, P. (2003) Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42: 1646-51.
Wolfe, C. L., Lou, Y. C., Hopper, A. K., Martin, N. C. (1994) Interplay of heterogeneous transcriptional start sites and translational selection of AUGs dictate the production of mitochondrial and cytosolic/nuclear tRNA nucleotidyltransferase from the same gene in yeast. J. Biol. Chem.269: 13361-6.
黃曉芸 (2005) 酵母菌 ALA1 基因轉譯起始機制的研究。中央大學碩士論文
指導教授 王健家(Wang Chien-Chia) 審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明