博碩士論文 93224008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.105.105
姓名 蔡維棻(Wei-Fen Tsai)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
(Expression change of proton-sensing G-protein coupled receptor,G2A,in ASIC3 knockout mice)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。
★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑
★ 酸敏感G蛋白偶合受體功能上的拮抗機制★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度
★ 台灣海岸植物之內生真菌多樣性研究★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現
★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons
★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫
★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加★ 酸敏感的G蛋白偶合受體─OGR1表現在背根神經節內與痛覺相關的感覺神經元上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 組織的受損與發炎,往往引起局部組織中氫離子濃度的增加,造成組織酸化。組織酸化被認為是導致疼痛的主要原因,目前已知有兩個陽離子通道,酸敏感離子通道家族(acid-sensing ion channel;ASIC3)及辣椒素受體(vanilloid receptor 1;VR1),可以受到氫離子的活化,並且參與傷害感受覺(nociception)的傳遞。最近的研究發現,屬於酸敏感G 蛋白偶合受體(proton-sensing G-protein-coupledreceptors)的OGR1 接受體家族,也可以接收氫離子的刺激,包括了:OGR1、GPR4 、TDAG8 及G2A。G2A 在早期認為是LPC( 脫脂磷酸脂膽鹼,lysophosphatidylcholine ) 的接受體, 並且受到氫離子及9-HODE(9-hydroxyoctadecadienoic)的活化。然而,G2A 是否可被氫離子所活化,並且是否參與傷害感受覺的調控機制,仍然不清楚。本篇論文的主要目的,是在探討氫離子對於G2A 的影響以及表現形式。經由RT-PCR 的結果顯示,G2A 在許多組織中均有表現,包括了背根神經節(dorsal root ganglia;DRG)。G2A 主要表現在小直徑,IB4-positive 的傷害感受器(nociceptor)。其中有趣的是,G2A 增加表現量在ASIC3 基因剔除小鼠DRG 中,並且主要增加在大直徑細胞。因此,G2A 也許參與了傷害感受覺的調控。然而在氫離子對G2A 的影響方面,與前人的實驗結果相符,我發現G2A 無法被氫離子所活化。
摘要(英) Tissue injury and inflammation often cause an increase of hydrogen ion concentration in local tissues, called tissue acidosis. Tissue acidosis seems to be the dominant factor that leads to painful sensation. Two cation channels,acid-sensing ion channel(ASIC3) and vanilloid receptor 1, are activated by proton and involved in nociceptive transduction. Recently, a subfamily of G-protein-coupled receptor (GPCR) including OGR1, GPR4, TDAG8 and G2A has been identified as proton-sensing receptors. G2A is originally known as a lysophosphatidylcholine (LPC) receptor and is also actived by proton
and 9-hydroxyoctadecadienoic. However, original studies for LPC and proton cannot be reproducible. Whether G2A is activated by proton and whether it is involved in nociception remain unclear. The objective of this thesis is to determine effects of pH on G2A and study its expression pattern. From RT-PCR results, G2A was expressed in many tissues including dorsal root ganglia (DRG). G2A was predominantly expressed in small-diameter, IB4-positive nociceptors. Interestingly, expression levels of G2A increased in ASIC3-/-DRG. This increase is due to an increase in G2A-expressing neurons, mainly in large diameter neurons. Accordingly, G2A may be involved in nociception. Consistent with previous studies, I have found G2A cannot be activated by proton.
關鍵字(中) ★ G-蛋白偶合受體
★ 痛覺
★ 背根神經節
★ 組織酸化
★ G2A
★ ASIC3
關鍵字(英) ★ tissue acidosis
★ ASIC3
★ GPCR
★ G2A
★ Pain
★ DRG
論文目次 中文摘要…………………………………………………………………………………...Ⅰ
英文摘要…………………………………………………………………………………...Ⅱ
致謝………………………………………………………………………………………...Ⅲ
目錄…………………………………………………………………………………...........Ⅳ
圖目錄………………………………………………………………………………….......Ⅶ
表目錄………………………………………………………………………………….......Ⅶ
縮寫與全名對照表………………………………………………………………………...Ⅷ
第一章 序論
1.1 痛覺………………………………………………………………………....................2
1.1.1 傷害感受性受器…………………………………………………………………….3
1.1.2 傷害感受覺的傳遞路徑…………………………………………………………….4
1.1.2.1 脊髓………………………………………………………………………………4
1.1.2.2 傷害感受覺的脊髓傳遞路徑……………………………………………………5
1.1.2.3 由脊髓傳遞到視丘及大腦皮質的路徑………………………………………..5
1.2 發炎反應及組織酸化…………………………………………………………………..6
1.2.1 發炎反應……………………………………………………………………………..7
1.2.2 發炎反應調節物……………………………………………………………………..8
1.2.3 組織酸化…………………………………………………………………………..10
1.3 氫離子接受體………………………………………………………………………….11
1.3.1 辣椒素受體 VR1…………………………………………………………………...11
1.3.2 酸敏感離子通道家族………………………………………………………………12
1.3.3 酸敏感G 蛋白偶合受體……………………………………………………………13
1.3.3.1 OGR1………………………………………………………………………........14
1.3.3.2 GPR4……………………………………………………………………….........14
1.3.3.3 TDAG8…………………………………………………………………………..15
1.3.3.4 G2A……………………………………………………………………………...15
1.4 研究目的………………………………………………………………………………17
第二章 實驗材料及方法
2.1 RNA 的萃取與備製……………………………………………………………………19
2.1.1 小鼠組織的製備……………………………………………………………………19
2.1.2 大量RNA 萃取……………………………………………………………………..19
2.1.3 小量RNA 萃取……………………………………………………………………..20
2.1.4 RNA 品質及濃度的測量…………………………………………………………..20
2.1.4.1 瓊脂醣膠(agarose gel)的製備及膠體電泳……………………………………20
III
2.1.4.2 RNA 變性……………………………………………………………………….21
2.1.4.3 RNA 濃度的測量……………………………………………………………….21
2.1.5 染色體DNA 的污染檢測及處理…………………………………………………..21
2.1.5.1 染色體DNA 的汙染檢測………………………………………………………21
2.1.5.3 DNase I 的處理...................................................................................................22
2.1.5.4 cDNA 的合成.....................................................................................................22
2.2 聚合酶連鎖反應.............................................................................................................22
2.2.1 引子的設計...............................................................................................................22
2.2.2 複製GPCR 基因的聚合酶連鎖反應.....................................................................23
2.2.3 反轉錄聚合酶連鎖反應.........................................................................................23
2.2.4 定量聚合酶連鎖反應.............................................................................................24
2.3 mG2A 基因的複製及質體的製備.................................................................................24
2.3.1 載體的製備...............................................................................................................24
2.3.1 mG2A 基因的複製...................................................................................................25
2.3.2 膠體萃取...................................................................................................................25
2.3.3 接合作用...................................................................................................................25
2.3.4 轉染作用...................................................................................................................26
2.3.5 PCR 菌落篩選..........................................................................................................26
2.3.6 小量質體製備...........................................................................................................26
2.3.7 大量質體製備...........................................................................................................27
2.3.8 mG2A 基因載體的重新構築...................................................................................27
2.4 原位雜合反應.................................................................................................................27
2.4.1 探針的製作..............................................................................................................28
2.4.1.1 製備mG2A基因反意義股探針的模板.............................................................28
2.4.1.2 mG2A 基因反意義股探針模板的純化.............................................................28
2.4.1.3 mG2A 基因反意義股探針的製備......................................................................28
2.4.1.4 mG2A 基因探針的純化.......................................................................................29
2.4.2 組織切片的製備....................................................................................................29
2.4.2.1 玻片處理..............................................................................................................29
2.4.2.2 組織切片..............................................................................................................29
2.4.2.3 組織切片的固定及乙醯化..................................................................................30
2.4.2.4 雜合反應..............................................................................................................30
2.4.4.5 免疫染色...............................................................................................................31
2.5 鈣離子分析實驗............................................................................................................32
2.5.1 細胞培養..................................................................................................................32
2.5.1.1 人類胚胎腎臟細胞.............................................................................................32
2.5.1.2 N2A....................................................................................................................32
IV
2.5.2 轉染作用................................................................................................................33
2.5.2.1 玻片前處理........................................................................................................33
2.5.2.2 種細胞.................................................................................................................33
2.5.2.3 細胞轉染.............................................................................................................33
2.5.3 鈣離子分析實驗.....................................................................................................34
2.5.3.1 pH 緩衝溶液的配製...........................................................................................34
2.5.3.2 Fura-2 的前處理.................................................................................................34
2.5.3.3 給予不同pH值刺激的鈣離子分析...................................................................34
第三章 結果
3.1 OGR1 基因家族在ASIC3+/+及ASIC3-/-小鼠在各組織中的分佈情形........................35
3.2 mG2A基因的表現量增加在ASIC3 -/-小鼠的背根神經節中........................................35
3.3 mG2A基因的表現量增加在ASIC3 -/-小鼠背根神經節的大細胞中...........................35
3.4 mG2A基因轉移表現量在ASIC3 -/-小鼠背根神經節IB4-的小細胞中........................36
3.5 mG2A基因在ASIC3 -/-小鼠背根神經節的表現改變至VR1-的小細胞中.................37
3.6 在過表現G2A 基因的細胞中G2A 基因對於不同pH 值的反應...............................37
第四章 討論.........................................................................................................................40
參考文獻...............................................................................................................................69
附錄......................................................................................................................................74
參考文獻 Bevan, S., and Yeast, J. (1992). Protons activate a cation conductance in a
sub-population of rat dorsal root ganglion neurons. J. Physiol. 433, 145-161.
Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R.,
Koltzenburg, M., Basbaum, A.I. and Julius, D. (2000). Impaired nociception and pain
sensation in mice lacking the capsaicin receptor. Science 288, 306-313.
Chen, C.C., Zimmer, A., Sun, W.H., Hall, J., Brownstein, M.J. and Zimmer, A. (2002). A role for
ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. U. S. A. 99,
8992-8997.
Dirajlal S., Pauers L. E., and Stucky C. L. (2003). Differential responses properties of IB4-positve
and –negative ummyelinated senspry neurons to protons and capsaicin. J. Neurophysiol. 89,
513-524.
Dray, A. Inflammatory mediators of pain. (1995). British Journal of Anaesthesia. 75, 125-131.
Im, D., Heise, C.E., Nguyen, T., O’Dowd, B.F. and Lynch, K.R. (2001). Identification of a
molecular target of psychosine and its role in globoid cell formation. J. Cell Biology 153,
429-434.
Ishii, Satoshi., Kihara, Yasuyuki., and Takao Shimizu.(2005). Identification of T Cell
Death-associated Gene 8 (TDAG8) as a Novel Acid Sensing G-protein-coupled Receptor. J. Biol.
Chem., 280-10, 9083-9087.
70
Julius, D. and Basbaum, A.I. (2001). Molecular mechanisms of nociception. Nature 413, 203-210.
Jones, Nicholas G., Rebeccah Slater., Herve Cadiou., Peter McNaughton., and Stephen B.
McMahon. (2004). Acid-Induced Pain and Its Modulation in Humans. Progress in Neurobiology,57,
1-164.
Kandel, E.R., Schwartz J.H. and Jessell, T.M., Principles of neural science. 4th edition. Chapter 24.
Kim, Kwan-sik ., Juan Ren., Ying Jiang., Quteba Ebrahem., Russell Tipps., Kelly Cristina., Yi-jin
Xiao., Jing Qiao.,Kevin L. Taylor.,Hazel Lum., Bela Anand-Apte., and Yan Xu. (2005). GPR4
plays a critical role in endothelial cell function and mediates the effects of
sphingosylphosphorylcholine. The FASEB Journal, 1-27.
Le, Lu Q., Janusz H. S. Kabarowski, Zhigang Weng, Anne B. Satterthwaite, Eric T. Harvill,
Eric R. Jensen, Jeff F. Miller and Owen N. Witte. (2001). Mice Lacking the Orphan G
Protein-Coupled Receptor G2A Develop a Late-Onset Autoimmune Syndrome. Immunity 14-
5, 561-571.
McCudden,C. R., Hains, M. D., Hains, Kimple., R. J.,Siderovski D. P. and F. S.Willard .(2005).
G-protein signaling: back to the future. CMLS, Cell. Mol. Life Sci,62 , 551–577.
McMahon, Stephen B., William B.J. Cafferty., Fabien Marchand. (2005). Immune and glial cell
factors as pain mediators and modulators. Experimental Neurology 192, 444– 462.
Millan, Mark J. (1999). The induction of pain: an integrative review. Neurobiology 57- 1, 1-164.
Molliver, Derek C., Immke , Immke ,David C ., Leonardo, Fierro., Michel, Paré., Frank L Rice2
and Edwin W McCleskey (2005). ASIC3, an acid-sensing ion channel, is expressed in
71
metaboreceptive sensory neurons. Molecular Pain , 1:35, 1-13.
Murakami, N .,Yokomizo, T., Okuno, T. and Shimizu, T. (2004). G2A is a proton-sensing
G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 279,
42484-42491.
Obinata, Hideru., Tomoyasu Hattori., Shinji Nakane.,Kazuaki Tatei., and Takashi Izumi.
(2005). Identif cation of 9-Hydroxyoctadecadienoic Acid and Other Oxidized Free Fatty Acids as
Ligands of the G Protein-coupled Receptor G2A. . Biol. Che., 280-49, 40676-40683.
Reeh, P. W., and Steen, K. H. (1996). Tissue acidosis in nociception and pain. Brain Research, 113,
143-151.
Rikitake, Yoshiyuki., Ken-ichi Hirata., Tomoya Yamashita., Kenji Iwai., Seiichi
Kobayashi.,, Hiroshi Itoh., Masanori Ozaki., Junya Ejiri., Masashi Shiomi., Nobutaka Inoue.,
Seinosuke Kawashima., Mitsuhiro Yokoyama. (2002). Arterioscler Thromb Vasc Biol, 22,
2049-2053.
Scholz, Joachim and Clifford J. Woolf. (2002). Can we conquer pain? Nature Neuroscience 5,
1062 – 1067.
Sluka, Kathleen A., Margaret P. Price., Nicole M. Breese., Cheryl L. Stucky., John A. Wemmie.,
Michael J. Welsh. (2003). Chronic hyperalgesia induced by repeated acid injections in muscle is
abolished by the loss of ASIC3, but not ASIC1. Pain 106, 229–239.
72
Steen, K.H., Reeh, P.W., Anton, F. and Handwereker, H.O. (1992). Protons selectively induce
lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro.
J. Neuronscience 12, 86-93.
Stucky C. L., and Lewin G. R.( 1999). Isolection B4-poitive and –negative nociceptors are
functionally distinct. J. Neurosci. 19-15, 6497-6505.
Sutherland S. P., Benson C. J., Adelmen J. P. and McCleskey E.W.(2001). Acid-sensing ion
cahnnels 3 matches the acid-gated current in cardiacischemia-sensing neurons. Proc. Natl. Acad.
Sci. USA, 98 (2), 711-716.
Tominaga,Makoto., Michael J. Caterina., Annika B. Malmberg.,Tobias A. Rosen., Heather Gilbert.,
Kate Skinner., Brigitte E. Raumann., Allan I. Basbaum., and David Julius.(1998). The
Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron, 21, 531–543.
Ugawa S., Ueda T., Nishigaki M., Shibata Y. and Shimada S.(2002). Amiloride-blockable
acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin.
Invest. 110, 1185-1190.
Vellani, Vittorio., Olof Zachrisson, and Peter A McNaughton. (2004). Functional bradykinin B1
receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF.
J Physiol. 15; 560, 391–401.
Walker, Katherine M, WALKER., Laslo Urban, Stephen J.Medhurst., Sadhana Patel, Mohanjit
Panesar., Alyson J. Fox, and Peter Mcintyre. (2002). The VR1 Antagonist Capsazepine
73
Reverses Mechanical Hyperalgesia in Models of Inflammatory and Neuropathic Pain.
J PET,304, 56-62.
Wang, J., Kon, J., Mogi, C., Tobo, M., Damirin, A., Sato, K., Komachi, K., Malchinkhuu, E.,
Murata, N., Kimura, T., Kuwabara, A., Wakamatsu, K., Koizumi, H., Uede, T., Tsujimoto, G.,
Kurose, H., Sato, T., Harada, A., Misawa, N., Tomura, H. and Okajima, F. (2004). TDAG8 is a
proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 279,
5626-45633.
Weng, Z., Fluckiger, A., Nisitani, S., Wahl, W.I., Le, L.Q., Hunter, C.A., Fernal, A.A., Beau,
M.M.L. and Witte O.N., 1998. A DNA damage and stress inducible G protein-coupled receptor
blocks cells in G2/M (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 12334-12339.
Xu, Y. (2002). Sphingosylphosphorylcholine and lysophosphatidylcholine:G protein-coupled
receptors and receptor-mediated signal transduction. Biochimica et Biophysica Acta .1582,
81-88.
Zaslavsky,Alexander., Lisam, Shanjukumar Singh., Haiyan, Tan., Huawen ,Ding ., Zicai,
Liang.,Yan Xu. Homo- and hetero-dimerization of LPA/S1P receptors, OGR1 and GPR4 (2006).
Biochimica et Biophysica Acta. 1761 , 1200–1212.
Zhu, K., Baudhuin, L.M., Hong, G., Williams, F.S., Cristina, K.L., Kabarowski, J.H.S., Witte, O.N.
and Xu, Y. (2001). Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for
the G protein-coupled receptor GPR4. J.Biol. Chem. 276, 41325-41335.
指導教授 孫維欣(Wei-Hsin Sun) 審核日期 2007-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明