博碩士論文 93224010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.145.45.143
姓名 潘勤意(Chin-Yi Pan)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 台灣溫泉區新種抗輻射嗜熱菌之生化特性研究
(Studies of Biochemical Characteristics of Novel Radiation Resistant Thermophilic Bacteria from Hot Springs in Taiwan)
相關論文
★ 三氯乙烯與四氯乙烯對人類肺癌細胞之毒性研究★ Galectin-1 與 Thioredoxin peroxidase II 基因之選殖及表現
★ 亞砷酸鈉誘引分裂中期停滯細胞之蛋白質體研究★ Galectin-1蛋白與亞砷酸鈉毒性與結合作用之研究
★ 氧化壓迫與p53參與三氯乙烯及四氯乙烯誘導人類肺癌細胞凋亡之研究★ Thioredoxin Peroxidase II蛋白與亞砷酸鈉毒性與結合作用之研究
★ 環型類★ 亞砷酸鈉與Galectin-1蛋白交互作用之研究
★ PAG蛋白質對三氧化二砷誘發急性前骨髓性白血癌細胞毒性之角色研究★ Galectin-1蛋白對細胞生長於幾丁聚醣膜上的影響及調控機制之研究
★ 低劑量亞砷酸鈉誘引第一型血紅素氧化酶調控路徑之研究★ 砷化物抑制Galectin-1基因之表現及機制之研究
★ 砷化物誘導Thioredoxin Peroxidase II蛋白之表現及機制之研究★ Galectin-1蛋白促進老鼠軟骨細胞於幾丁聚醣修飾之聚乳酸-聚乙酸醇共聚物支架生長之研究
★ Galectin-1對亞砷酸鈉毒性影響之研究★ Galectin-1誘導前脂肪細胞分化機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
台灣地熱區中的各種不同嗜熱性細菌,在先前的研究已被分離出來,而且有些嗜熱菌具有輻射抗性。本研究自台灣溫泉中的嗜熱菌,經過迦瑪射線處理後,篩選出數株具抗輻射特性的菌株,並進一步探討其輻射抗性的機制。根據16S rDNA 序列分析的結果顯示,六株新分離的抗輻射特性的菌株被歸為 Meiothermus 屬,進一步研究發現它們與標準株Meiothermus silvanus DSM 9946T 最相似。此外也分析其形態、生化、生理及遺傳的特性,以作為系統學的研究。結果顯示,六株Meiothermus 屬新的抗輻射菌株為桿狀形態且為革蘭氏陰性菌。經由 ICP-MS 分析的結果顯示,分離株中的NTU-716G、NTU-1574G、NTU-1573G之Mn/Fe比值,較標準株 Meiothermus silvanus DSM 9946T 與其他三株分離株(NTU-1113G、NTU-1115G、NTU-1575G)為低。有趣的是,含有較低Mn/Fe比值的菌株,同樣顯示其過氧化氫的活性比較低以及耐乾旱與耐紫外線的能力較低。此外,這些菌株經過紫外光照射後,會產生較多量的過氧化氫,而且過氧化氫酶活性會下降更加明顯。文獻指出在Deinococcus radiodurans 抗輻射菌珠中,較多的Mn累積是增加其抗迦瑪射線能力的機制。而本論文結果顯示,在嗜熱性Meiothermus spp.菌珠中,較高的Mn/Fe比值也與其抗紫外線與抗乾旱能力具有正相關性,而此種抗性可能與菌體本身具有較高過氧化氫酶活性有關。
摘要(英) Abstract
In previous studies, various thermophilic bacteria living in Taiwan’s geothermal environments were isolated and showed radiation resistant. In this study, several thermophilic radiation resistant bacteria isolated from hot springs in Taiwan, were selected for further characterization of resistant mechanism. Radiation resistant bacteria were isolated from water samples after gamma irradiation. According to 16S rDNA sequence analysis, these isolates were all grouped into the genus of Meiothermus spp. Six strains were selected for further studying and found these strains were most similar with Meiothermus silvnus DSM9946T. Several analyses, including morphological, biochemical, physiological and genetic tests, were applied for systematic study. The results showed that the six novel radiation resistant strains of genus Meiothermus were rod-shaped and gram-negative. The isolates NTU-716G, NTU-1574G and NTU-1573G showed lower Mn/Fe ratio (as indicated by ICP-MS analysis) than that of type strain Meiothermus silvnus DSM 9946T and other isolates (NTU-1113G, NTU-1115G and NTU-1575G). Interestingly, the lower Mn/Fe ratio strains also showed either lower level of catalase activity or lower resistance to desiccation and UV. Moreover, UV-irradiation also significantly induced H2O2 production and attenuated catalase activity in these strains. Higher Mn accumulation has been shown to facilitate gamma-radiation resistance in Deinococcus radiodurans. The current results suggested that higher Mn in thermophilic Meiothermus spp. might be also correlated to UV and/or desiccation resistance, and this resistance in part is contributed by higher catalase activity.
關鍵字(中) ★ 抗輻射嗜熱菌 關鍵字(英) ★ Radiation resistant thermophilic bacteria
論文目次 Contents
Chapter 1 Introduction 1
1. Thermophilic bacterium 1
2. Thermophiles in Taiwan 3
3. Radiation Resistant Bacteria 3
4. Thermophilic Radiation Resistant Bacteria Isolated from Taiwan 5
5. Introductory of Meiothermus spp. 6
6. The Mechanisms of Radiation resistance in Thermophiles 7
7. Specific aim 10
Chapter 2 Material and Methods 11
1. Isolation of bacterial strains 11
2. Morphological characteristics 12
3. Phenotypic characteristics 13
4. Fatty acid profiles 15
5. Determination of mean DNA base composition and DNA-DNA hybridization 15
6. 16S rDNA-based phylogenetic analysis 17
7. Quantifying desiccation resistance 18
8. Resistancce to UV irradiation 18
9. Analysis of intracellular Mn/Fe ratio by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) 19
10. Determination of H2O2 accumulation 19
11. Assays for catalase activity 20
Chapter 3 Results and Discussion 21
1. Isolation of bacterial strains 21
2. Morphological and ultrastructural characteristics 21
3. Phenotypic and biochemical characteristics 22
4. Fatty acid composition 23
5. Mean base composition of DNA and DNA-DNA relatedness 24
6. 16S r DNA sequence analysis 24
7. UV irradiation of isolates 25
8. Ultraviolet resistance and resistance to desiccation 26
9. Analysis of intracellular Mn/Fe ratio by ICP-MS 26
10. Effect of UV irradiation on the production of H2O2 27
11. Catalase activity and UV resistance 28
Chapter 4 Conclusion 29
1. Taxonomy studies of radiation resistant Meiothermus isolates 29
2. The mechanisms of radiation resistance in isolates 31
Tables and Figures 33
References 53
Appendix 66
參考文獻 References
范瑞君 2003 台灣溫泉抗輻射嗜熱奇異球菌之研究。國立台灣大學植
物學研究所碩士論文。
陳懋彥 2002 台灣地熱區嗜熱性細菌之研究。國立台灣大學植物學研
究所博士論文。
許嘉如 2005 台灣地熱區抗輻射嗜熱菌之研究。國立台灣大學植物學
研究所碩士論文。
Aguilar, A., T. Ingemansson, and E. Magnien. 1998. Extremophile microorganisnisms and cell factories : support from the European Union. Extremophiles 2: 357-373.
Aguilar, C. M., and D. L. Medin. 1999. Asymmetries of comparison.
Psychon Bull Rev 6:328-337.
Anderson, A. W., H. C. Nordan, R. F. cain, G., Parrish, and D. Duggan. 1956.
Studies on a radio-resisteant micrococcus. The isolation, morphology, cultural
characteristics and resistance to gamma radiation. Food Technol 10:575-577.
Asgarani, E., H. Terato, K. Asagoshi, H. R. Shahmohammadi, Y. Ohyama, T. Saito, O. Yamamoto, and H. Ide. 2000. Purification and characterization of a novel DNA repair enzyme from the extremely radioresistant bacterium Rubrobacter radiotolerans. J Radiat Res (Tokyo) 41:19-34.
Battista, J. R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203-224.
Bessman, M. J., D. N. Frick, and S. F. O'Handley. 1996. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 271:25059-25062.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
Brim, H., S. C. McFarlan, J. K. Fredrockson, K. W. Minton, M. Zhai, L. P.
Wackett, and M. J. Daly. 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85-90.
Brim, H., A. Venkateswaran, H. M. Kostandarithes, J. K. Fredrickson, and M. J. Daly. 2003. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575-4582.
Brock, T. D. 1978. Thermophilic microorganisms and life at high temperature. New York : Springer.
Brock, T. D. 1986. Thermophiles: general, molecular, and applied microbiology. Wilwy, New York.
Brock, T. D., and H. Freeze. 1969. Thermus aquaticus gen. n., a nonsporulating extreme thermophile. J Bacteriol 98:289-297.
Brooks, B. W., and R. G. E. Murray. 1981. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31:353-360.
Buyer, J. S. 2002a. Identification of bacteria from single colonies by fatty acid analysis. J Microbiol Methods 48:259-265.
Buyer, J. S. 2002b. Rapid sample processing and fast gas chromatography for identification of bacteria by fatty acid analysis. J Microbiol Methods 51:209-15.
Carreto, L., E. Moore, M. F. Nobre, R. Wait, P. W. Riley, R. J. Sharp, and M. S. da Costa. 1996. Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460-465.
Carreto, L., R. Wait, M. F. Nobre, and M. S. da Costa. 1996. Determination of the structure of a novel glycolipid from Thermus aquaticus 15004 and demonstration that hydroxy fatty acids are amide linked to glycolipids in Thermus spp. J Bacteriol 178:6479-6486.
Chen, C. Y., L. B. Lin, Q. Peng, K. L. Ben, and Z. M. Zhou. 2002a. Meiothermus rosaceus sp. nov. isolated from Tengchong hot spring in Yunnan, China. FEMS Microbio Letters 216:263-268.
Chen, M. Y., G. H. Lin, Y. T. Lin, and S. S. Tsay. 2002b. Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int J Syst Evol Microbiol 52:1647-1654.
Chen, M. Y., S. S. Tsay, K. Y. Chen, Y. C. Shi, Y. T. Lin, and G. H. Lin. 2002c. Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52:2155-2161.
Chen, M. Y., S. H. Wu, G. H. Lin, C. P. Lu, Y. T. Lin, W. C. Chang, and S. S. Tsay. 2004. Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849-1855.
Chien, A., D. B. Edgar, and J. M. Trela. 1976. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550-1557.
Chou, F. I., and S. T. Tan. 1990. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J Bacteriol 172:2029-2035.
Chung, A. P., F. Rainey, M. F. Nobre, J. Burghardt, and M. S. da Costa. 1997. Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. Int J Syst Bacteriol 47:1225-1230.
Daly, M. J., E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M. V. Omelchenko, H. M. Kostandarithes, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, and D. Ghosal. 2004. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025-1028.
Dose, K., A. Bieger-Dose, M. Labusch, and M. Gill. 1992. Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12:221-229.
Eghbal, M. A., S. Tafazoli, P. Pennefather, and P. J. O. Brien. 2004. Peroxidase catalysed formation of cytotoxic prooxidant phenothiazine free radicals at physiological pH. Chemico-Biological Interactions 151:43-51.
Evans, D. M., and B. E. Meseley. 1988. Deinococcus radiodurans UV endonuclease beta DNA incision do not generate photoreversible thymine residues. Mutat Res 207:117-119.
Ferreira, A. C., M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa. 1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939-947.
Ferreira, A. C., M. F. Nobre, F. A. Rainey, J. R. Battista, and M. S. da Costa. 1999. Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235-238.
Fredrickson, J. K., H. M. Kostandarithes, S. W. LI, A. E. Plymale, and M. J. Daly. 2000. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006-2011.
Gerard, E., E. Jolivet, D. Prieur, and P. Forterre. 2001. DNA protection mechanisms are involved in the radioresistance of the hyperthermophilic arachaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 266:72-78.
Ghosala, D., M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenkoa, A. Venkateswaran, M. Zhaia, H. M. Kostandarithes, H. Brimd, K. S. Makarova, L. P. Wackette, J. K. Fredricksonc, and M. J. Daly. 2005. How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev 29:361-375.
Giard, J. C., J. M. Laplace, A. Rince, V. Pichereau, A. Benachour, C. Leboeuf, S. Flahaut, Y. Auffray, and A. Hartke. 2001. The stress proteome of Enterococcus faecalis. Electrophoresis 22:2947-2254.
Gutman, P. D., P. Fuchs, L. Ouyang, and K. W. Minton. 1993. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J Bacteriol 175:3581-3590.
Holtke, H. L., W. Ankenbauer, K. Muhligger, R. Rein, G. Sagner, R. Seibl, and T. Walter. 1995. The Digoxigenin (DIG) System for non-radioactive labelling and detection of nucleic acids-an overview. Cell Mol Biol 41:833-905.
Humble, M. W., A. King, and I. Phillips. 1977. API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Path 30:275-277.
Imlay, J. A. and S. Linn. 1987. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169: 2967–2976.
Jan, R. L., J. Wu, S. M. Chaw, C. W. Tsai, and S. D. Tsen. 1999. A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 49:1809-1816.
Johnson, J. L. 1984. Nucleic acids in bacterial classification. In Burgey's Manual of Systematic Bacteriology, vol. 1, pp. 8-11. Edited by N. R. Krieg & J. G. Holt. Baltimore : Williams & Wilkins.
Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules.
Kesseler, C., H. J. Holtke, R. Seibl, J. Burg, and K. Muhlegger. 1990. Non-radioactive labeling and detection of mucleic acids. I. A novel DNA labeling and detection system based on digoxigenin :anti-digoxigenin ELISA principle (digoxigenin system). Biol Chem Hoppe Seyler 371:917-927.
Kuykendall, L. D., M. A. Roy, J. J. O’Neill, and T. E. Devine. 1988. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyhizobium japonicum. Int J Syst Bacteriol 38: 358-361.
Lee, T. C., and I. C. Ho. 1995. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69:498-504.
Loginova, L. G., L. A. Egorova, R. S. Golovacheva, and L. M. Seregina. 1984. Thermus ruber sp. nov., nom. rev. Int J Syst Bacteriol 34:498-499.
Madigan, M. T., and B. L. Marrs. 1997. Extremophiles. Sci Am 276:82-87.
Maidak, B. L., N. Larsen, M. J. McCaughey, R. Overbeek, G. L. Olsen, K. Fogel, J. Blandy, and C. R. Woese. 1994. The ribosomal database project. Nucleic Acids Res 22:3484-3487.
Makarovak, S., L. Aravind, Y. Wolf, R. L. Tarusov, K. W. Minton, E. V. Koonin, and M. J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44-79.
Manaia, C. M., and M. S. da Costa. 1991. Characterization of halotolerant Thermus isolates from shallow marine hot springs of S.Miguel, Azores. J Gen Microbiol 137:2643-2648.
Markillie, L. M., S. M. Varnum, P. Hradecky, and K. K. Wong. 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666-669.
Masters, C. I., B. E. Moseley, and K. W. Minton. 1991. AP endonuclease and uracil DNA glycosylase activities in Deinococcus radiodurans. Mutant Res 254:263-272.
Mattimore, V., and J. R. Battista. 1996. Radioresistance of Deinoceccus radiodurans: Functions necessary to survive ionizing fadiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633-637.
Mesbah, M., U. Premachandran, and W. B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-pergormancce liquid chromatography. Int J Syst Bacteriol 39:157-167.
Minton, K. W. 1996. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutant Res 363:1-7.
Misra, H. S., N. P. Khairnar, S. Kota, S. Shrivastava, V. P. Joshi, and S. K. Apte, 2006. An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol Microbiol 59:1308-1316.
Moseley, B. E. 1967. The isolation and some properties of radiation-sensitive mutants of Micrococcus radiodurans. J Gen Microbiol 49:293-300.
Moseley, B. E., and D. M. Evans. 1983. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. J Gen Microbiol 129:2437-2345.
Moseley, B. E., and A. Mattingly. 1971. Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol 105:976-983.
Nadler, V., I. Glodberg, and A. Hochman. 1986. A comparative study of bacterial catalases. Biochim Biophys Acta 882:241-243.
Narumi, I., K. Satoh, S. Cui, T. Funayama, S. Kitayama, and H. Watanabe. 2004. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54:278-285.
Nelson, D. P., and L. A. Kiesow. 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at 25oC (with molar extinction coefficients of H2O2 solution in the UV). Anal Biochem 49:474-478.
Nielsen, P., D. Fritze, and F. G. Priest. 1995. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745-1761.
Nishimura, Y., T. Ino, and H. Lizuka. 1998. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 38:209-211.
Nobre, M. F., H. G. Truper, and da Costa MS 1996. Transfer of Thermus ruber (Loginova et al., 1984), Thermus silvanus (Tenreiro et al., 1995) and Thermus chliarophilus (Tenreiro et al., 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov. and Meiothermus chliarophilus comb. nov., respertively, and emendation of the genus Thermus. Int J Syst Bacteriol 46:604–606
Pantazaki, A. A., A. A. Pritsa, and D. A. Kyriakidis. 2002. Biotechnologically relevant enzymes from Thermus thermophilius. Appl Microbiol Biotechnol 58:1-12.
Phillips, R. W., J. Wiegel, C. J. Berry, C. Fliermans, A. D. Peacock, D. C. White, and L. J. Shimkets. 2002. Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 52:933-8.
Pires, A. L., L. Albuquerque, I. Tiago, M. F. Nobre, N. Empadinhas, A. Verissimo, and M. S. da Costa. 2005. Meiothermus timidus sp. nov., a new slightly thermophilic yellow-pigmented species. FEMS Microbiol Lett 245:39-45.
Pires, A. L., L. Albuquerque, I. Tiago, M. F. Nobre, N. Empadinhas, A. n. Verý´ssimo, and M. S. d. Costa. 2005. Meiothermus timidus sp. nov., a new slightly thermophilic yellow-pigmented species. FEMS Microbiology Letters 245:39-45.
Rainey, F. A., N. Ward-Rainey, R. M. Kroppenstedt, and E. Stackebrant. 1996. The genus Nocardiopssis respresents phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088-1092.
Romanovskaia, V. A., P. V. Rokitko, and R. Malashenko Iu. 2000. Unique properties of highly radioresistant bacteria. Microbiol 62:40-63.
Saitou, N., and M. Nei. 1987. The neghbor-joining method : a new method for reconstructing phylgenetic trees. Mol Biol Evol 4:406-425.
Santors, M. A., R. A. D. williams, and M. S. da Costa. 1989. Numerical taxonomy of Thermus isolates from hot-springs in Protugal. Syst Appl Microbiol 12:310-315.
Sanders, S. W., and R. B. Maxcy. 1979. Isolation of radiation-resistant bacteria without exposure to irradiation. Appl Environ Microbiol 38:436-439.
Shashidhar, R., and J. R. Bandekar. 2006. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India. FEMS Microbiol Lett 254:275-280.
Sheng, D., G. Gao, B. Tian, Z. Xu, Z. Zheng, and Y. Hua. 2005. RecX is involved in antioxidant mechanisms of the radioresistant bacterium Deinococcus radiodurans. FEMS Microbiol Lett 244:251-257.
Shieh, W. Y., W. D. Jean, Y. T. Lin, and M. Tseng. 2003. Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49:244-252.
Shieh, W. Y., and W. D. Jean. 1998. Alterococcus agarolyticus, gen. nov., so. nov., a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44:637-645.
Suzuki, K., M. D. Collins, E. Iijima, and K. Komagata. 1988. Chemotaxonomic characterization of a radiotolerant bacterium Arthrobacter radiotolerans: description of Rubrobacter radiotolerans
gen. nov., comb. nov. FEMS Microbiol Lett 52:33-40.
Tanaka, M., A. M. Earl, H. A. Howell, M. J.Park, J. A. Eisen, S. N. Peterson, and J. R. Battista. 2004. Analysis of Deinococcus radiodurans’s Transcriptional Response to Ionizing Radiation and Desiccation Reveals Novel ProteinsThat Contribute to Extreme Radioresistance. Genetic 168:21-33.
Tenreiro, S., Nobre, M. F. , and M. S. da Costa. 1995. Thermus silvanu sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int J Syst Bacteriol 45:633-639.
Valerie, M., and J. R. Battista. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. Americans Soci Microbiology 178:633-637.
Wang, G., R. C. Conover, S. Benoit, A. A. Olczak, J. W. Olson, M. K. Johnson, and R. J. Maier. 2004. Role of a bacterial organic hydroperoxide detoxification system in preventing catalase inactivation. J Biol Chem 279:51908-1914.
White, O., Eisen, J. A., and J. F. Heidelberg. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571-1577.
Willamis, R. A. D., and M. S. da Costa. 1992. The genus Thermus and related microoranisms. In The Prokaryltes, 2nd edn, pp. 3745-3753. Edited by A. Balows, H. G. Truper, M. Dworkin, W. Harder& & K. -H. Schleifer. New York : Springer.
Yang, F. L., C. P. Lu, C. S. Chen, M. Y. Chen, H. L. Hsiao, Y. Su, S. S. Tsay, W. Zou, and S. H. Wu. 2004. Structural determination of the polar glycoglycerolipids from thermophilic bacteria Meiothermus taiwanensis. Eur J Biochem 271:4545-4551.
Yoshinaka, T., K. Yano, and H. Yanaguchi. 1973. Isolation of a highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric Biol Chem 37:2269-2275.
Zhang, Y. M., T. Y. Wing, L. Y. Chen, C. S. Lin, and J. K. Liu. 2000. Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Appl Environ Microbiol 66:105-112
指導教授 黃榮南、蔡珊珊
(Rong-Nan Huang、San-San Tsay)
審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明