博碩士論文 93224011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.117.145.149
姓名 劉馨如(Hsin-Ju Liu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統
(Development of a high efficient protein secretory system in rice cell suspension cultures)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現★ 阿拉伯芥 AtMYBS 基因功能性探討
★ 水稻OsMYBS2基因的功能性分析★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻
★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079
★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷
★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究★ I. II.
★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性★ 水稻CAF1基因在水稻懸浮培養細胞之研究
★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色★ 水稻中五個DEAD-box RNA helicase - RH2、RH6、RH22、RH42和RH51基因之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近數十年來,有許多研究致力於利用不同的表達系統來生產具有醫療用價值的基因重組蛋白質。而一個理想的表達系統必須能以最低的成本來生產安全、具有生物活性的蛋白質。近年來植物的表達系統已然成為具有許多優勢的選擇,其中水稻系統的成本低,且不具毒性,目前已經應用於許多蛋白質的表現;除了選擇一個理想的表達系統之外,我們必須集結系統中的其他優勢使其更有效率。無論是真核或原核生物,蛋白質的信號肽已被許多研究利用來有效生產蛋白質藥物,使蛋白質的N端附加一段分泌信號肽,讓蛋白質得以分泌至細胞外,而簡化下游純化的工程並降低生產成本。動植物中的蛋白質信號肽有某些保守的特徵,但其氨基酸組成的變異大,因此不同蛋白質的信號肽被認為有不同的辨認機制,而使分泌效率有所不同。為了增加蛋白質在水稻細胞培養系統中的分泌效率,我們篩選水稻中的內生性的蛋白質信號肽,分別是αAmylase3、CIN1(cell wall invertase1)以及33kD,C端各別接上GFP (green fluorescent protein)作為報導基因,於水稻細胞中大量表現。利用西方點墨法偵測蛋白質並比較三種信號肽的分泌效率,分析的結果發現αAmylase3之信號肽有最佳的分泌效率。為了確定αAmylase3信號肽的分泌效率是否專一於GFP,抑或可以適用在其他蛋白質,因此我們將會分析這三組信號肽對於mGM-CSF (mouse granulocyte-macrophage stimulation factor)蛋白質的分泌效率。除了初步篩選水稻中的內生性信號肽,未來我們會從其他動植物,甚至酵母菌中進行篩選,希望集結這些資訊而使發展一套高分泌效率的水稻細胞表達系統。
摘要(英) Research in the past few decades has worked on the use of therapeutically valuable proteins from different protein expression systems. The ideal foreign protein expression system would be the one that produces the most safe, biologically active material at the lowest cost. Plant-based expression systems have emerged as a serious competitive force in the large-scale production of recombinant proteins. Most recombinant genes can be expressed in cultured rice cells; therefore, it is essential to determine which expression cassettes offer the most advantages for the production of the recombinant protein. The knowledge of protein signal sequences has become a crucial tool for pharmaceutical scientists who genetically modify bacteria, plants, and animals to produce effective drugs. By adding a specific tag to the desired proteins, one can, for instance, tag them for excretion, making them much easier to harvest. Though general features of secretion signals are conserved between plants and animals, the broad sequence variability among signal peptides suggests differing efficiency of signal peptide recognition. To increase the secretion of recombinant protein in rice suspension cells, we generated overexpression vectors using different endogenous N-terminal signal peptides (αAmylase3,CIN1,33kD) fused with green florescence protein (GFP) and mouse granulocyte-macrophage stimulation factor (mGM-CSF), respectively. We detected the secreted GFP by Western blotting. Comparison of different signal peptides for secretion of GFP in rice suspension culture, we found that αAmylase3 is the better signal peptide for secreted the GFP out. To examine whether the supremacy of the αAmylase3 signal is specific for GFP, we’ll subsequently analyze the secretion efficiency of mGM-CSF and intend to develop a high efficiency secretion system in rice suspension cells.
關鍵字(中) ★ 蛋白質高效率分泌系統 關鍵字(英) ★ protein secretory system
論文目次 縮寫與全名對照表 I
中文摘要 II
Abstract III
本文目錄 IV
表目錄 VII
圖目錄 VIII
壹、研究動機 1
貳、前言 1
1. 基因重組蛋白質表達系統 2
1.1 原核生物表達系統 3
1.2 酵母菌表達系統 3
1.3 昆蟲及哺乳動物細胞表達系統 3
1.4 植物蛋白質表達系統 4
1.5 植物細胞蛋白質表達系統 6
2. 水稻懸浮細胞表達系統 10
3. 信號肽 (Signal peptides) 11
3.1 水稻基因的信號肽 (Signal peptides of Oryza sativa) 13
4. 綠色螢光蛋白 (Green Fluorescent Protein) 14
5. 顆粒細胞一巨噬細胞集落刺激因子 (granulocyte-macrophage colony stimulating factor,GM-CSF) 14
6. 實驗架構 17
參、研究方法與材料 18
第一部份 建構表達質體 18
1. 選擇蛋白質在細胞外大量存在的基因 18
2. 利用SignalP server 預測蛋白質信號肽的位置 18
3. 反轉錄PCR分別合成三組signal peptide 18
3.1 RNA的抽取 18
3.2 RNA的純化(去除DNA的污染) 19
3.3 反轉譯PCR ( Reverse-transcription PCR) 19
3.4 Primers的設計 19
3.5 以PCR合成signal peptides 19
3.6 PCR產物的純化及限制酶處理 20
3.7 瓊脂膠體回收限制酵素切過之DNA 21
4. 接合反應 23
4.1 限制酵素作用 23
4.2 線性載體DNA的去磷作用 23
4.3 黏頭端載體DNA與插入DNA片段的接合 23
5. 以Gateway系統快速建構mGM-CSF之表達載體 24
5.1 以Gateway system製備含有mouse GM-CSF的topo entry vector 24
5.2 利用LR recombination的方式製備mGM-CSF的expression clone 25
6. 細菌的轉殖作用 26
6.1 製備E.coli competent cell勝任細胞 ( JM109 strain) 26
6.2 細菌的轉殖 (transformation) 27
6.3 小量純化細菌質體DNA 27
6.4 大量純化細菌質體DNA法 27
7. DNA序列分析 29
第二部份 農桿菌之水稻基因轉殖 29
8. 利用農桿菌 (Agrobacterium) 進行水稻細胞的轉殖 29
8.1 從水稻未成熟的胚誘導出癒傷組織 (callus) 29
8.2 製備Agrobacterium competent cells ( EHA 105 strain ) 30
8.3 農桿菌的轉殖方法 30
8.4 檢測農桿菌 (Ketolactose test) 31
8.5 水稻的轉殖作用 31
8.6 水稻轉植株的再生 32
第三部份、轉殖株的分子生物學分析 32
9. GUS染色篩選 32
10. 以PCR放大genomic DNA中GFP的基因 32
10.1 基因組DNA的抽取與純化 33
10.2 基因組DNA之PCR篩選 33
11. 南方墨點法分析( Southern blot) 33
11.1 DNA墨點轉印 33
11.2 探針(probe)的製備 (Roche DIG-labeled DNA probe) 34
11.3 純化探針 35
11.4 探針雜交 ( probe hybridization) 35
第四部份、轉殖株的蛋白質表現分析 36
12. 建立水稻懸浮細胞培養 36
13. 細胞內外表現蛋白質的分析 36
13.1 收集細胞內外分泌蛋白質及純化 37
13.2 蛋白質的定量 37
13.3 培養液之蛋白質濃縮 37
13.4 西方墨點法分析( Western blot) 38
肆、結果 40
1. 大量表現信號肽融合GFP之表達載體的構築 40
1.1 預測蛋白質的信號肽部分 40
1.2 蛋白質的信號肽的選殖 40
1.3 構築信號肽融合GFP之表達載體 40
2. 建立信號肽融合GFP之轉殖水稻細胞株 41
2.1 利用農桿菌轉殖系統建立信號肽融合GFP之轉殖水稻細胞株 41
2.2 轉殖細胞的基因組DNA鑑定 42
3. 水稻中信號肽融合GFP蛋白質的分泌效率分析 43
3.1 建立水稻懸浮細胞培養 43
3.2水稻懸浮細胞株其GFP之RNA表現量 43
3.3 水稻懸浮細胞培養下GFP蛋白質的分析 43
4. 大量表現信號肽融合mGM-CSF之表達載體的構築 44
5. 利用Gateway系統快速建構由αAmy3啟動子調控mGM-CSF的表達載體 45
伍、討論 46
陸、參考文獻 49
附錄一 質體建構圖(1) 72
附錄二 質體建構圖(2) 73
附錄三 質體建構圖(3) 74
附錄四 本研究所使用之引子序列 75
附錄五 信號序列及其氨基酸組成 76
附錄六 研究材料配製 77
參考文獻 李景欽 (2006)。桿狀病毒(Baculovirus)在生物科技及生物醫學上的應用。高雄醫學大學e快報。
Au LC, Liu TJ, Shen HD, Choo KB, Wang SY (1996) Secretory production of bioactive recombinant human granulocyte-macrophage colony-stimulating factor by a baculovirus expression system. J Biotechnol 51: 107-113
Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98: 2899-2904
Bayne ML, Applebaum J, Chicchi GG, Hayes NS, Green BG, Cascieri MA (1988) Expression, purification and characterization of recombinant human insulin-like growth factor I in yeast. Gene 66: 235-244
Berkner KL (1993) Expression of recombinant vitamin K-dependent proteins in mammalian cells: factors IX and VII. Methods Enzymol 222: 450-477
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
Busby S, Kumar A, Joseph M, Halfpap L, Insley M, Berkner K, Kurachi K, Woodbury R (1985) Expression of active human factor IX in transfected cells. Nature 316: 271-273
Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 13: 329-332
Chen TL, Lin YL, Lee YL, Yang NS, Chan MT (2004) Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures. Transgenic Res 13: 499-510
Cousens LS, Shuster JR, Gallegos C, Ku LL, Stempien MM, Urdea MS, Sanchez-Pescador R, Taylor A, Tekamp-Olson P (1987) High level expression of proinsulin in the yeast, Saccharomyces cerevisiae. Gene 61: 265-275
Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6: 219-226
Danilevskaia ON (1979) Expression of eukaryotic genes in Escherichia coli cells. Genetika 15: 2087-2107
De La Fuente G, Sols A (1962) Transport of sugars in yeasts. II. Mechanisms of utilization of disaccharides and related glycosides. Biochim Biophys Acta 56: 49-62
Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005-1016
Evangelista RL, Kusnadi AR, Howard JA, Nikolov ZL (1998) Process and economic evaluation of the extraction and purification of recombinant beta-glucuronidase from transgenic corn. Biotechnol Prog 14: 607-614
Firek S, Draper J, Owen MR, Gandecha A, Cockburn B, Whitelam GC (1993) Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol Biol 23: 861-870
Gillis S, Urdal DL, Clevenger W, Klinke R, Sassenfeld H, Price V, Cosman D (1988) Production of recombinant human colony stimulating factors in yeast. Behring Inst Mitt: 1-7
Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7: 171-181
Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22: 1415-1422
Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35: 205-218
Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22: 711-720
Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97: 1914-1919
Huang J, Sutliff TD, Wu L, Nandi S, Benge K, Terashima M, Ralston AH, Drohan W, Huang N, Rodriguez RL (2001) Expression and purification of functional human alpha-1-Antitrypsin from cultured plant cells. Biotechnol Prog 17: 126-133
Huang LF, Liu YK, Lu CA, Hsieh SL, Yu SM (2005) Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res 14: 569-581
James EA, Wang C, Wang Z, Reeves R, Shin JH, Magnuson NS, Lee JM (2000) Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells. Protein Expr Purif 19: 131-138
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
Kusnadi AR, Hood EE, Witcher DR, Howard JA, Nikolov ZL (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14: 149-155
Kwon TH, Seo JE, Kim J, Lee JH, Jang YS, Yang MS (2003) Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnol Bioeng 81: 870-875
Lubon H, Paleyanda RK (1997) Vitamin K-dependent protein production in transgenic animals. Thromb Haemost 78: 532-536
The map-based sequence of the rice genome. (2005) Nature 436: 793-800
McDonald KA, Hong LM, Trombly DM, Xie Q, Jackman AP (2005) Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol Prog 21: 728-734
Nalecz KA (2000) The 1999 Nobel Prize for physiology or medicine. Neurol Neurochir Pol 34: 233-242
O'Brien PM, Seow HF, Entrican G, Coupar BE, Wood PR (1995) Production and characterisation of ovine GM-CSF expressed in mammalian and bacterial cells. Vet Immunol Immunopathol 48: 287-298
Parney IF, Chang LJ (2003) Cancer immunogene therapy: a review. J Biomed Sci 10: 37-43
Ravandi F (2006) Role of cytokines in the treatment of acute leukemias: a review. Leukemia 20: 563-571
Sacchetti A, Cappetti V, Marra P, Dell'Arciprete R, El Sewedy T, Crescenzi C, Alberti S (2001) Green fluorescent protein variants fold differentially in prokaryotic and eukaryotic cells. J Cell Biochem Suppl Suppl 36: 117-128
Schaaf A, Tintelnot S, Baur A, Reski R, Gorr G, Decker EL (2005) Use of endogenous signal sequences for transient production and efficient secretion by moss (Physcomitrella patens) cells. BMC Biotechnol 5: 30
Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65: 363-372
Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology (NY) 8: 217-221
Skory CD, Freer SN, Bothast RJ (1996) Expression and secretion of the Candida wickerhamii extracellular beta-glucosidase gene, bglB, in Saccharomyces cerevisiae. Curr Genet 30: 417-422
Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18: 333-338
Thim L, Hansen MT, Sorensen AR (1987) Secretion of human insulin by a transformed yeast cell. FEBS Lett 212: 307-312
Torres E, Vaquero C, Nicholson L, Sack M, Stoger E, Drossard J, Christou P, Fischer R, Perrin Y (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8: 441-449
Toyofuku K, Umemura T, Yamaguchi J (1998) Promoter elements required for sugar-repression of the RAmy3D gene for alpha-amylase in rice. FEBS Lett 428: 275-280
Verner K, Schatz G (1988) Protein translocation across membranes. Science 241: 1307-1313
Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22: 1393-1398
Yamane H, Lee SJ, Kim BD, Tao R, Rose JK (2005) A coupled yeast signal sequence trap and transient plant expression strategy to identify genes encoding secreted proteins from peach pistils. J Exp Bot 56: 2229-2238
Yoshida K, Shinmyo A (2000) Transgene expression systems in plant, a natural bioreactor. J Biosci Bioeng 90: 353-362
指導教授 陸重安(Chung-An Lu) 審核日期 2006-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明