博碩士論文 93224021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:152 、訪客IP:18.221.146.223
姓名 廖敏杏(Min-Hsing Liao)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 植物受溫度調控之基因的功能與機制分析
(Mechanism and functional analysis of temperature regulated genes in plants)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討
★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析★ 受熱與ABA調控基因AtRZFP33之生理功能分析
★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究
★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 當環境溫度比正常所生長的溫度高出5-10度時,原核和真核生物都會對高溫產生反應而合成熱休克蛋白質。小分子量熱休克蛋白質的分子量約為15-30 kDa,是高等植物中含量最豐富的蛋白質,因此被視為高等植物體內所特有的一群蛋白質。從高山植物黃菀(senecio nemorensis)中找到葉綠體型熱休克蛋白質,利用葉綠體型熱休克蛋白質基因當成模式基因,瞭解小分子量熱休克蛋白質的調節機制。結果顯示除了熱逆境外,也有許多的逆境,如寒害及H2O2都會誘導這類熱休克蛋白質的表現,同時冬天在當地所採集的樣品中也可以偵測到此基因的表現。
另方面,為改善長時間的低溫處理誘導蝴蝶蘭開花時,對植物產生傷害的現象,利用農桿菌將低溫有關的基因,如大麥的HVA1基因、阿拉伯芥中與春化作用 有關的開花基因(At.FLC; At.VRN1)轉殖進入蝴蝶蘭中,以期能獲得低溫穩定調控的蝴蝶蘭品系,但經過長時間的轉殖實驗,並沒有成功的獲得到蝴蝶蘭轉植株。
摘要(英) Both eukaryotes and prokaryotes respond to high temperature by synthesizing heat shock proteins (HSPs) when environmental temperature were elevated 5℃ to 10℃ above normal growth temperature. Small HSPs (sHSPs) are ranging in size from 15 to 30 kDa. and represent the most abundant family of HSPs in higher plants. We have cloned chloroplast small heat shock proteins (CPsHSPs) from the high mountain plants, Senecio nemorensis. Using CPsHSPs as a model gene, we try to understanding of the regulatory mechanism of sHSPs. The results showed that many other stresses such as chilling, H2O2 can induce CPsHSPs expression. Interestingly, CPsHSPs was detected in the local samples which are growing in winter season. In order to alleviate the damage of Phalaenopsis plants when long term of chilling treatment, which is the condition for inducing flowering in Phalaenopsis, we try to transfer HVA1 (a LEAIII gene from barley), At.FLC, and At.VRN1 (flowering genes from Arabidopsis thaliana) genes into Phalaenopsis plants. The major aim is to control flowering time and alleviate the damage induced by low temperature in Phalaenopsis. However, no transgenic plants are established so far.
關鍵字(中) ★ 溫度
★ 熱休克蛋白質
★ 春化作用
★ 蝴蝶蘭
關鍵字(英) ★ heat shock protein
★ vernalization
★ phalaenopsis
★ temperature
論文目次 中文摘要……………………………………………………………………………Ⅰ
英文摘要……………………………………………………………………………Ⅱ
目錄…………………………………………………………………………………Ⅲ
圖表目錄……………………………………………………………………………Ⅵ
縮寫與全名對照表…………………………………………………………………Ⅶ
壹、 序論 ……………………………………………………………………………1
※ partⅠ
(一)逆境(stress)。…………………………………………………………… 1
(二)熱休克反應和熱休克蛋白質。……………………………………………1
(三)熱休克蛋白質的種類與功能。……………………………………………2
(四)熱休克基因的表現和調控。………………………………………………2
(五)植物小分子量熱休克蛋白質。……………………………………………3
(六)小分子量熱休克蛋白質的功能。…………………………………………4
(七)其他誘導熱休克蛋白質合成的因子。……………………………………4
(八)葉綠體型小分子量熱休克蛋白質。………………………………………4
(九)高山植物菊科黃菀屬植物。………………………………………………6
(十)研究目的。…………………………………………………………………6
※ partⅡ
(1)植物的生活史。………………………………………………………………8
(2)春化作用。……………………………………………………………………8
(3)春化作用相關基因及其調控。………………………………………………9
(4)與低溫逆境相關的蛋白質。…………………………………………………11
(5)蝴蝶蘭。……………………………………………………………………12
(6)低溫誘導蝴蝶蘭開花所遭遇到的問題和主要研究方向。………………12
貳、 材料與方法 ……………………………………………………………………14
※ partⅠ
一.植物材料。……………………………………………………………………14
二.CPsHSPs基因套數(gene copy number)的確定。 ………………………14
2.1 純化黃菀genomic DNA。 ………………………………………………14
2.2 DNA的轉漬分析(transfer)。 …………………………………………15
2.3 探針(isotope probe)的置備。 …………………………………………16
2.4 雜交(Hybridization)。……………………………………………………17
三.非生物性逆境處理(abiotic stress treatment)。 ……………………………18
3.1 不同熱休克(heat shock)溫度處理。 …………………………………18
3.2 冷害(chilling)處理。 …………………………………………………18
3.3 氧化逆境(oxidative stress)。 …………………………………………18
四.RNA的分析方法。……………………………………………………………19
4.1黃菀total RNA的純化。 …………………………………………………19
4.2 RNA電泳分析。……………………………………………………………20
4.3 RNA dot blotting。 …………………………………………………………21
4.3.1 Transfer to membrane。…………………………………………………21
4.3.2探針(DIG probe)的備製。……………………………………………22
4.3.3雜合反應(hybridization)。……………………………………………23
4.4 Optimization RT-PCR。 ……………………………………………………24
4.4.1純化不含genomic DNA的RNA。……………………………………24
4.4.2單股cDNA的合成。……………………………………………………25
4.4.3以PCR合成DNA片段。………………………………………………25
五.使用iPCR的方法確定序列的正確性。………………………………………26
※ partⅡ
一.構築質體(construction)。……………………………………………………-28
1.1以PCR方式合成At.FLC;At.VRN1以及大麥的HVA1基因全長片段。…28
1.1.1引子的設計。……………………………………………………………28
1.1.2 PCR反應液的配置和實驗步驟。………………………………………28
1.2載體DNA(pJD312;pCAMBIA1300)的製備。…………………………29
1.3以pCAMBIA1300當binary載體,建構可以轉殖到植物體內的質體。-30
1.4接合反應(Ligation)。………………………………………………………31
1.5大腸桿菌的轉型作用(Transformation)(E. coli strain:DH5α)。……31
1.6少量純化質體DNA(Mini-preparation)。…………………………………32
1.7核酸序列分析(DNA sequencing)。………………………………………32
1.8菌種的保純。 ………………………………………………………………32
二.蝴蝶蘭的基因轉殖。 …………………………………………………………33
2.1農桿菌勝任細胞的製備(Agrobacterium strain:LBA4404)。……………33
2.2農桿菌的轉型(transformation)。 …………………………………………33
2.3蝴蝶蘭的轉殖與篩選。 ……………………………………………………34
參、 結果 ……………………………………………………………………………36
肆、 討論 ……………………………………………………………………………40
伍、參考文獻 ………………………………………………………………………44
陸、圖表 ……………………………………………………………………………50
柒、附錄
附錄一:黃菀植物的葉綠體型熱休克蛋白質基因序列。………………………64
附錄二:選殖的基因序列。 ………………………………………………………65
附錄三:載體pJD312(A)和pCAMBIA1300(B)的建構圖。 ………………66
附錄四:農桿菌菌液配置培養液。 ………………………………………………67
附錄五:蝴蝶蘭PLB的培養基配方。 ……………………………………………68
參考文獻 Almoguera, C., P. Prieto-Dapena, et al. (1998). "Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements." Plant J 13(4): 437-46.
Anderson, J. V., Q. B. Li, et al. (1994). "Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation." Plant Physiol 104(4): 1359-70.
Banzet, N., C. Richaud, et al. (1998). "Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells." Plant J 13(4): 519-27.
Frydman, J. (2001). "Folding of newly translated proteins in vivo: the role of molecular chaperones." Annu Rev Biochem 70: 603-47.
Gustavsson, N., U. Harndahl, et al. (1999). "Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer." Protein Sci 8(11): 2506-12.
Hartl, F. U. (1996). "Molecular chaperones in cellular protein folding." Nature 381(6583): 571-9.
Helm, K. W., J. Schmeits, et al. (1995). "An endomembrane-localized small heat-shock protein from Arabidopsis thaliana." Plant Physiol 107(1): 287-8.
Hsieh, M. H., J. T. Chen, et al. (1992). "A Class of Soybean Low Molecular Weight Heat Shock Proteins : Immunological Study and Quantitation." Plant Physiol 99(4): 1279-1284.
Jinn, T. L., Y. M. Chen, et al. (1995). "Characterization and Physiological Function of Class I Low-Molecular-Mass, Heat-Shock Protein Complex in Soybean." Plant Physiol 108(2): 693-701.
Kiyosue, T., K. Yamaguchi-Shinozaki, et al. (1994). "Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes." Plant Mol Biol 25(5): 791-8.
LaFayette, P. R., R. T. Nagao, et al. (1996). "Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean." Plant Mol Biol 30(1): 159-69.
Lee, B. H., S. H. Won, et al. (2000). "Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice." Gene 245(2): 283-90.
Lee, G. J., N. Pokala, et al. (1995). "Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea." J Biol Chem 270(18): 10432-8.
Lee, J. H., A. Hubel, et al. (1995). "Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis." Plant J 8(4): 603-12.
Lee, Y., R. T. Nagao, et al. (1996). "Induction and Regulation of Heat-Shock Gene Expression by an Amino Acid Analog in Soybean Seedlings." Plant Physiol 110(1): 241-248.
Lenne, C., M. A. Block, et al. (1995). "Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves." Biochem J 311 ( Pt 3): 805-13.
Ma, C., M. Haslbeck, et al. (2006). "Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes." Plant Physiol 141(1): 47-60.
Scharf, K. D., M. Siddique, et al. (2001). "The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins)." Cell Stress Chaperones 6(3): 225-37.
Schoffl, F., R. Prandl, et al. (1998). "Regulation of the heat-shock response." Plant Physiol 117(4): 1135-41.
Sundby, C., U. Harndahl, et al. (2005). "Conserved methionines in chloroplasts." Biochim Biophys Acta 1703(2): 191-202.
Van Montfort, R. L., E. Basha, et al. (2001). "Crystal structure and assembly of a eukaryotic small heat shock protein." Nat Struct Biol 8(12): 1025-30.
Wang, W., B. Vinocur, et al. (2004). "Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response." Trends Plant Sci 9(5): 244-52.
Waters, E. R. and E. Vierling. (1999). "Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein." Proc Natl Acad Sci U S A 96(25): 14394-9.
Wehmeyer, N., L. D. Hernandez, et al. (1996). "Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation." Plant Physiol 112(2): 747-57.
Alonso-Blanco, C., S. E. El-Assal, et al. (1998). "Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana." Genetics 149(2): 749-64.
Amasino, R. (2004). "Vernalization, competence, and the epigenetic memory of winter." Plant Cell 16(10): 2553-9.
Bastow, R., J. S. Mylne, et al. (2004). "Vernalization requires epigenetic silencing of FLC by histone methylation." Nature 427(6970): 164-7.
Chandler, J., A. Wilson, et al. (1996). "Arabidopsis mutants showing an altered response to vernalization." Plant J 10(4): 637-44.
Gendall, A. R., Y. Y. Levy, et al. (2001). "The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis." Cell 107(4): 525-35.
Hong, B., R. Barg, et al. (1992). "Developmental and organ-specific expression of an ABA- and stress-induced protein in barley." Plant Mol Biol 18(4): 663-74.
Johanson, U., J. West, et al. (2000). "Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time." Science 290(5490): 344-7.
Komeda, Y. (2004). "Genetic regulation of time to flower in Arabidopsis thaliana." Annu Rev Plant Biol 55: 521-35.
Koornneef, M., C. Alonso-Blanco, et al. (1998). "Genetic interactions among late-flowering mutants of Arabidopsis." Genetics 148(2): 885-92.
Koornneef, M., C. J. Hanhart, et al. (1991). "A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana." Mol Gen Genet 229(1): 57-66.
Lee, H., S. S. Suh, et al. (2000). "The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis." Genes Dev 14(18): 2366-76.
Levy, Y. Y. and C. Dean (1998). "Control of flowering time." Curr Opin Plant Biol 1(1): 49-54.
Levy, Y. Y., S. Mesnage, et al. (2002). "Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control." Science 297(5579): 243-6.
Lin, S. I., J. G. Wang, et al. (2005). "Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis." Plant Physiol 137(3): 1037-48.
Michaels, S. D. and R. M. Amasino (1999). "FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering." Plant Cell 11(5): 949-56.
Michaels, S. D., E. Himelblau, et al. (2005). "Integration of flowering signals in winter-annual Arabidopsis." Plant Physiol 137(1): 149-56.
Parenicova, L., S. de Folter, et al. (2003). "Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world." Plant Cell 15(7): 1538-51.
Salehi, H., C. B. Ransom, et al. (2005). "Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C." J Plant Physiol 162(6): 711-7.
Sharrocks, A. D. and P. Shore (1995). "DNA bending in the ternary nucleoprotein complex at the c-fos promoter." Nucleic Acids Res 23(13): 2442-9.
Sheldon, C. C., J. E. Burn, et al. (1999). "The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation." Plant Cell 11(3): 445-58.
Sheldon, C. C., A. B. Conn, et al. (2002). "Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression." Plant Cell 14(10): 2527-37.
Sheldon, C. C., E. J. Finnegan, et al. (2000). "The control of flowering by vernalization." Curr Opin Plant Biol 3(5): 418-22.
Sheldon, C. C., D. T. Rouse, et al. (2000). "The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC)." Proc Natl Acad Sci U S A 97(7): 3753-8.
Shore, P. and A. D. Sharrocks (1995). "The MADS-box family of transcription factors." Eur J Biochem 229(1): 1-13.
Sung, S. and R. M. Amasino (2004). "Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3." Nature 427(6970): 159-64.
Xu, D., X. Duan, et al. (1996). "Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice." Plant Physiol 110(1): 249-257.
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2006-11-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明