博碩士論文 93226011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.233.217.242
姓名 陸奕君(I-Chun Lu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具平坦化側帶之超窄帶波導模態共振濾波器研究
(Research of Ultranarrow-Band Guided-Mode Resonance Filters with Flattened Sidebands)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究
★ 具45度反射面之非共平面轉折波導光路★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端
★ 具三維光路之光連接發射端模組★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組
★ 建立於矽基光學平台之高分子聚合物波導光路★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製
★ 發光二極體色溫控制技術及其於色序式微型投影機之應用★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模
★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文最主要目的是設計一波導模態共振濾波器(guided-mode resonance filter,GMR),使其具有下列三大特性:提升濾波器側帶(sideband)的穿透率(最大透射率 > 0.9)、加寬高穿透率的頻譜區域(具高透射率側帶範圍 ≥ 400 nm)、使共振線寬Δλ變窄(Δλ < 1 nm)。我們提出的結構由上往下分別為:SiNx光柵、SiNx波導、SiO2基板。我們先利用波導理論設計出波導的厚度及特徵模態,利用相位匹配求得相對應的光柵週期,接著引入等效介質理論(effective medium theory)提升側帶特性。也探討尺度因子(filling factor)與光柵深度兩結構參數對於波導模態共振濾波器弱調制(weak modulation)現象的影響。經考慮製程可行性,最後成功設計出TE(transverse electric)與TM(transverse magnetic)兩種偏振態下的波導模態共振濾波器:針對TE模態,共振波長在1550 nm、共振線寬為0.79 nm、側帶寬為668 nm、最大側帶穿透率可達0.9378;而針對TM模態,共振波長在1550 nm、共振線寬為0.77 nm、側帶寬為714.94 nm、最大側帶穿透率可達0.9362。最後,使用嚴格耦合波理論(rigorous coupled wave analysis,RCWA)模擬其頻譜側帶特性,並與等效介質理論所模擬之頻譜側帶特性做一驗證。並探討製程容忍度,光柵深度變異對於共振波長與共振線寬的影響,最後針對設計的兩波導模態共振濾波器其頻帶結構(band structure)做一學理上合理解釋。
摘要(英) In this thesis, we show that ultranarrow-band guided-mode resonance (GMR) filters with flattened sidebands can be implemented with weakly modulated subwavelength gratings and low/high/low quarter-half-quarter dielectric thin-film stacks. These band-stop (notch) filters with characteristics of high efficiency, extended low-sideband reflection, and symmetric line shapes are designed by embedding waveguide gratings in layered structures possessing the feature of antireflection. The resonant wavelength of proposed GMR filters is precisely controlled at 1550 nm for optical communication. Furthermore, the improved spectral performance at sideband including the intensity of zero-order diffraction efficiency greater than 0.9 and the spectral range of sideband greater than 400 nm, the improved contrast between resonance peak and sideband, as well as the modulate ultra-narrow linewidth for resonance peak are demonstrated theoretically. The thickness of SiNx waveguide and its corresponding grating period are designed by using the waveguide theory and the phase-matching condition. The sideband performance can be improved by means of the effective medium theory. The effects of the grating filling factor and the grating depth on weakly-modulated GMRs are studied. The fabrication feasibility of proposed structures is considered during our design. Two GMR filters, containing the case of the transverse electric (TE) and the transverse magnetic (TM) polarization, are designed to demonstrate the concept. Under the requirement of transmission efficiency at sideband greater than 93%, resonance wavelength of 1550 nm, and its linewidth Δλ less than 0.8 nm, and sideband can extended more than 660 nm. Finally the sideband spectral response of proposed structures is compared by using the rigorous coupled wave analysis (RCWA) and the effective medium theory (EMT). The fabrication tolerance regarding grating depth, resonant peak location, and linewidth are discussed. Furthermore, the performances of ultranarrow-band guided-mode resonance filters are also studying by using band diagrams.
關鍵字(中) ★ 嚴格耦合波理論
★ 等效介質理論
★ 共振線寬
★ 弱調制
★ 超窄帶
★ 波導模態共振濾波器
★ 頻帶結構
★ 平坦化側帶
關鍵字(英) ★ guided-mode resonance
★ weakly modulated
★ band-stop
★ quarter-half-quarter dielectric thin-film stack
★ notch
★ waveguide grating
★ phase-matching condition
★ antireflection
★ effective medium theory (EMT)
★ rigorous coupled wave analysis (RCWA)
★ band diagram
★ subwavelengt
論文目次 第一章 導論……………………………………………………….1
1.1光學薄膜濾波器簡介……………………………………………3
1.2 波導模態共振濾波器簡介…………………………………….4
1.3 研究動機……………………………………………………….8
1.4 文獻回顧………………………………………………………14
第二章 波導模態共振濾波器之原理……………………………19
2.1 繞射式光柵相關理論…………………………………………20
2.2 波導理論………………………………………………………23
2.3 薄膜理論………………………………………………………31
2.3.1 等效介質理論………………………………………………32
2.3.2 光學薄膜理論………………………………………………36
2.4 嚴格耦合波理論(RCWA)……………………………………37
2.4.1 TE偏振態……………………………………………………37
2.4.2 TM偏振態……………………………………………………40
2.5 共振波導光柵共振條件與共振位置…………………………41
第三章 具平坦化側帶之超窄帶波導模態共振濾波器結構設計與模擬
3.1 設計與特性分析………………………………………………43
3.2 驗證等效介質理論……………………………………………61
3.3 模擬結果分析…………………………………………………63
3.4 製程與量測容忍度之模擬與分析……………………………69
第四章 結論與未來展望…………………………………………72
參考文獻及附錄……………………………………………………74
參考文獻 [1] 李正中,“薄膜光學與鍍膜技術”第三版
[2] R. W. Wood, ‘‘On a remarkable case of uneven distribution of light in a diffraction grating spectrum,’’ Philos. Mag. 4, 396 (1902).
[3] A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 10, 1275 (1965).
[4] A. Sharon, D. Rosenblatt, and A. A. Friesem ” Resonant   grating–waveguide structures for visible and near-infrared radiation” J. Opt. Soc. Am. A 14. 11 2985 (1997).
[5] R. Magnusson, D. Shin, and Z. S. Liu. “Guided-mode resonance Brewster filter,” Opt. LETTERS 23, 612 (1998).
[6] E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional sub-wavelength binary gratings”, J. Opt. Soc. Am. A 11, 2695 (1994).
[7] David Rosenblatt, Avner Sharon, and Asher A. Friesem, “Resonant Grating Waveguided Structures”, IEEE J. Quantum Electron, 33, 2038 (1997).
[8] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 8, 1470 (1990).
[9] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Waveguide mode-induced resonances in planar diffraction gratings," in Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 117.
[10] R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022 (1992).
[11] S. S. Wang and R. Magnusson ‘‘Theory and applications of guided-mode resonance filters” Appl. Opt. 32, 2606 (1993).
[12] Christoph Kappel, Andre Selle, Mark Andreas Bader, and Gerd Marowsky ‘‘Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers” J. Opt. Soc. Am. B, 21, 1127 (2004).
[13] Cedric Lenaerts, Vincent Moreau, Yves F. Lion, Yvon L. Renotte ‘‘Narrow bandwidth wavelength filter by guided mode resonance” Opt. Eng. 43, 2631 (2004).
[14] Donghyun Kim and Kieron Burke ‘‘Design of a grating-based thin-film filter for broadband spectropolarimetry” Appl. Opt. 42, 6321 (2003).
[15] Donald K. Jacob, Steven C. Dunn, and M. G. Moharam ‘‘Design consideration for narrow-band dielectric resonant grating reflection filters of finite length” J. Opt. Soc. Am. A 17, 1241 (2000).
[16] Carlos. F. R. Mateus, Michael C. Y. Huang, Yunfei Deng, Andrew R. Neureuther, Connie J. Chang-Hasnain ‘‘Ultrabroadband Mirror using low-index cladded subwavelength grating” IEEE Photo. Tech. Lett. 16, 518 (2004).
[17] S. Tibuleac and R. Magnusson ‘‘Reflection and transmission guided-mode resonace filters” J. Opt. Soc. Am A 14, 1617 (1997).
[18] Carlos. F. R. Mateus, Michael C. Y. Huang, Yunfei Deng, Andrew R.
Neureuther, Connie J. Chang-Hasnain ‘‘Broad-band Mirror
(1.12-1.62μm) Using subwavelength grating” IEEE Photo. Tech.
Lett. 16, 1676 (2004).
[19] Robert R. Boye and Raymond K. Kostuk ‘‘Investigation of the effect
of finite grating size on the performance of guided-mode resonance
filters” Appl. Opt. 39, 3649 (2000).
[20] Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Mafnusson
‘‘High-efficiency guided-mode resonance filter” Opt. Lett. 23, 1556
(1998).
[21] Thelen A., 1988, “Design of Optical Interference Coatings”, Chap. 7,
McGraw-Hill Book Company, N.Y.
[22] Southwell W. H., 1988, “Spectral response calculations of rugate
filters using coupled-wave theory”, J. Opt. Soc. Am. A. 5, 1558-1564
[23] Rudolf F. Kazatinov, Charles H. Henry “Second-Order Distributed
Feedback Lasers with Mode Selection Provided by First-order
Radiation Losses”, IEEE QE-21, 144 (1985).
[24] David L. Brundrett, Elias N. Glytsis, Thomas K. Gaylord, and Jon M.
Bendickson “Effects of modulation strength in guided-mode resonant
subwavelength gratings at normal incidence?, J. Opt. Soc. Am. A 17,
1221 (2000).
[25] Y. Ding and R. Magnusson“Use of nondegenerate resonant leaky
modes to fashion diverse optical spectra?, Opt. Exp. 12, 1885
(2004)
[26] Y. Ding and R. Magnusson“Resonant leaky-mode spectral-band
engineering and device applications”, Opt. Exp. 12, 5661 (2004)
[27] S. S. Wang, R. Magnusson “Design of waveguide-grating filters with
symmetrical line shapes and low sidebands”, Opt. Lett., 19 (12), 919
(1994)
[28] R. Magnusson, S. S. Wang “Transmission bandpass guided-mode
resonance filters”, Appl. Opt., 34 (35), 8106 (1995)
[29] A. Sharon, David J. Rosenblatt, Asher A. Friesem, Hans-Georg
Weber, Herbert Engel, and Ralf Steingrueber “Resonance phenomena
in grating/waveguide structures”, Proc. SPIE 2426, 416 (1995)
[30] A. Sharon, D. Rosenblatt, and A. A. Friesem “Narrow spectral
bandwidths with grating waveguide structures”, Appl. Phys. Lett. 69,
4154 (1996)
[31] Tibuleac, S.; Magnusson, R. “Diffractive narrow-band transmission
filters based on guided-mode resonance effects in thin-film
multilayers”, IEEE Photonics Tech. Lett., 9 (4), 464 (1997)
[32] S. Tibuleac, R. Magnusson “Narrow-linewidth bandpass filters with
diffractive thin-film layers”, Opt. Lett., 26 (9), 584 (2001)
[33] Y. Ding, R. Magnusson “Doubly resonant single-layer bandpass
optical filters”, Opt. Lett., 29 (10), 1135 (2004)
[34] Chao-Yi Tai, Bayram Unal, James S. Wilkinson, Mohamed A.
Ghanem, and Philip N. Bartlett “Optical coupling between a self-assembled microsphere grating and a rib waveguide”, Appl. Phys.
Lett. 84, 3513 (2004)
[35] Andy C. van Popta, Matthew M. Hawkeye, Jeremy C. Sit, and
Michael J. Brett “Gradient-index narrow-bandpass filter fabricated
with glancing-angle deposition”, Opt. Lett., 29 (21), 2545 (2004) [38]
[36] Che-Lung Hsu, Yung-Chih Liu, Chih-Ming Wang, Mount-Learn Wu,
Ya-Lun Tsai, Yue-Hong Chou, Chien-Chieh Lee, Jenq-Yang Chang
“Bulk-Micromachined Optical Filter Based on Guided-Mode
Resonance in Silicon-Nitride Membrane”, J. Lightwave Tech., 24
(4), 1922 (2006)
[37] E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial
and biaxial dielectrics with use of two-dimensional sub-wavelength
binary gratings”, J. Opt. Soc. Am. A 11, 2695 (1994)
[38] S. Sinzinger and J. Jahns, Microoptics, Wiley-Vch, New York, 166
(1999)
[39] R. C. Tyan, P. C. Sun, A. Scherer, and Yeshayahu, “Polarizing beam
splitter based on anisotropic spectral reflectivity characteristic of
form-birefringent multilayer gratings “, Opt. Let. 21, 761 (1996)
[40] Kaspar F.G. ”Diffraction by thick, periodically stratified grating with
complex dielectric constant,” J. Opt. Soc. Am. 63, 37(1973)
[41] Knop K. “Rigorous diffraction theory for transmission phase grating
with deep rectangular grooves,”J. Opt. Soc. Am. 68 120(1978)
[42] M. G.. Moharam and T. K. Gaylord, ”Rigorous coupled-wave
analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71 811
(1981)
指導教授 張正陽、伍茂仁
(Jeng-Yang Chang、Mao-Jen Wu)
審核日期 2006-12-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明