博碩士論文 93226034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:35.175.212.130
姓名 李慶良(Ching-Liang Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 生物晶片螢光分析之微光學模組
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 介電電濕式數位微流體驅動系統之探討
★ 發光二極體照明系統之色彩特性優化設計★ 以EWOD為基礎的長鏈高分子原位合成器
★ 色盲量化測試系統之研究★ 可調式自然日光模擬光源之製作
★ 演色性評估之相關性指標★ 亞精胺影響下DNA構形與DNA碎片分佈之研究
★ 生物晶片之螢光光學檢測★ 光學式生化反應即時偵測系統
★ 微液滴驅動之研究與探討★ LED光源新式應用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來,由於生物科技一日千里,並且搭配成熟的微系統加工技術,使得生物晶片的研究蔚為風潮。目前應用在生物晶片上的訊號偵測方法有許多種,例如:螢光檢測法和電位量測法等,本文主要探討的是螢光檢測法,利用消逝波的激發方式激發螢光,進而整合微透鏡和微光柵成一微光學系統,用來調制螢光光源,而促成整個生物晶片檢測系統。
本文模擬主要針對微光學元件設計和混光分析做討論,微透鏡設計概念為先定義系統所需照度分佈結果,再藉由結果反推透鏡形式,本文所設計的非球面平凸透鏡發散角為0.5、規一化照度分佈為0.92以上。微光柵結構設計成循環比為50﹪、相位深度為π,目的讓有分光效果的一階繞射效率提升為40.5﹪。混光分析利用混合頻譜訊號,反推算出組成此混合頻譜訊號的不同頻譜訊號所佔的總能量比。
本文製程主要利用壓模方式製作微透鏡,文中將針對模具製作、灌模和量測系統做詳細介紹,本文所製作的非球面平凸透鏡發散角為7.1、規一化照度分佈為近似高斯分佈。
摘要(英) Recently, according to the great progress in biotechnology and the miniaturization techniques in engineering, the development on the technology of lab on a chip becomes one of the most important subjects for the multi-discipline integration. There are many signal detection methods applied on the biochip, such as the fluorescence detection method and the potentiometric detection method etc. Here, this study focus on the fluorescence detection method and utilize the evanescent wave to excite the fluorescence, then use micro-lens and micro-grating to modulate the fluorescent light source and promote the detective system of the biochip.
The lens design focuses on the planoaspherical lens. This lens can be used to generate a homogenous irradiance on the target in the grating, which uses the fluorescent light as light source.
The grating design focuses on the binary phase grating. As the binary structures are based on π-phase depth and 50﹪-duty cycle, diffraction efficiency of the binary approximation is only 40.5﹪in the +1 diffraction order.
Templates with inverse images of the planoaspherical lens using casting techniques. The image of microstructures are then transferred from templates to quartz.
關鍵字(中) ★ 微光柵
★ 微透鏡
★ 消逝波
關鍵字(英) ★ micro-grating
★ micro-lens
★ evanescent wave
論文目次 第一章 緒論 1
1.1 前言 1
1.2 研究動機 10
第二章 晶片架構設計 15
2.1 折射式透鏡的設計 15
2.2 繞射式光柵的設計架構 26
2.3 螢光訊號混光分析 30
2.4 小結 32
第三章 模擬與結果分析 33
3.1 折射式透鏡設計與結果分析 33
3.2 繞射式光柵設計與結果分析 49
3.3 混光訊號分析 56
3.4 小結 61
第四章 透鏡製程與量測結果討論 62
4.1 透鏡製程步驟 62
4.2 量測系統 67
4.3 結果分析 69
4.4 小結 73
第五章 總結 74
參考文獻 77
參考文獻 [1] J. Craig Venter, “The Sequence of the Human Genome”, Science, vol. 291, pp.1304-1351, 2001.
[2] T. Strachan, “Human Molecular Genetics, 3th ED”, 2004.
[3] H. Lodish, “Molecular Cell Biology, 5th ED”, 2004.
[4] K. K. Jain, “Biochips for Gene Spotting”, Science, vol. 294, pp. 621-623, 2001.
[5] J. Khan, “Expression profiling in cancer using cDNA”, Electrophoresis, vol. 20, pp. 223-229, 1999.
[6] G. Macbeath, S. L. Schreiber, “Printing Proteins as Microarrays for High- Throughput Function Determination”, Science, vol. 289, pp. 1760-1763, 2000.
[7] D. Erickson, “Integrated microfluidic devices”, Analytica Chimica Acta, vol. 507, pp. 11-26, 2004.
[8] A. Manz, “Miniaturized Total Chemical Analysis System: A Novel Concept for Chemical Sensing”, Sensors and Actuators, B1, pp. 244-248, 1990.
[9] M. Schena, “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray”, Science, vol. 270, pp. 467-470, 1995.
[10] 張玉瓏,“生物技術”, 新文京開發出版有限公司, 2003。
[11] R. J. Lipshutz, “High density synthetic oligonucleotide arrays”, Nature genetics, vol. 21, pp. 20-24, 1999.
[12] A. Gorg, “The current stage of two dimensional electrophoresis with immobilized pH gradients”, Electrophoresis, vol. 21, pp. 1037-1053, 2000.
[13] A. Gorg, Postel, W., Gunther, s., “Nuclear integrations of mitochondrial DNA in primates: Inference of associated mutational events”, Electrophoresis, vol. 9, pp.531-546, 1988.
[14] M. Koch, “The dynamic micropump driven with a screen printed PZT actuator,” Journal of Micromechanics and Microengineering, vol. 8, pp. 119-122, 1998.
[15] A. Manz, “Micromachining a Miniaturized Capillary Electrophoresis -Based Chemical Analysis System on a Chip,” Science, vol. 261, pp. 895-897, 1993.
[16] C. G. J. Schabmueller, “Closed Chamber PCR Chips for DNA Amplification”, Engineering Science and Education Journal, vol.9, pp.259-264, 2000.
[17] J. Chiou, “Performance of a Closed-cycle Capillary Polymerase Chain Reaction Machine”, Micro Total Analysis System 2001, pp. 495-496, 2001.
[18] C. F. Chou, “A miniaturized cyclic PCR device-modeling and experiments”, Microelectronic Engineering, vol. 61, pp. 921-925,2002.
[19] E. Thrusha, “ Monolithically integrated semiconductor fluorescence sensorfor microfluidic applications”, Sensors and Actuators B, vol.105, pp.393–399, 2005.
[20] Der-chang Chen, “Palladium Film Decoupler for Amperometric Detec -tion in Electrophoresis Chips”, Anal. Chem., vol.73, pp.758-762, 2001.
[21] C. S. Effenhauser, “Integrated Capillary Electrophoresis on Flexi -ble Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips” , Anal. Chem., vol.69, pp.3451-3457, 1997.
[22] D.M. Pinto, “An enhanced microfluidic chip coupled to an electro -spray Qstarmass spectrometer for protein indentification”, Electrophoresis, vol.21, pp.181-190, 2000.
[23] P.A. Walker, “Isotachophoretic Separations on a Microchip. Normal Raman Spectroscopy Detection”, Anal. Chem., vol.70, pp.3766-3769, 1998.
[24] Z. Liang, “Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices”, Anal. Chem., vol.68, pp.1040-1046, 1996.
[25] T. Kamei, “Integrated Hydrogenated Amorphous SiPhotodiode Detector for Microfluidic Bioanalytical Devices”, Anal. Chem., vol.75, pp.5300-5305, 2003.
[26] 周虹宇,“生物晶片螢光檢測之光源模型探討”,國立中央大學光電科學研究所,碩士論文,民國九十三年。
[27] X. Deng, X. Liang, Z. Chen, W. Yu, R. Ma, “Uniform illumination of large targets using a lens array”, Appl. Opt. ,vol. 25, pp.377–381, 1986.
[28] D. G. Burkhard , D. L. Shealy, “Specular aspheric surface to obtain a specified irradiance from discrete or continuous line source radiation: design”, Appl. Opt., vol.14, pp.1279–1284, 1975.
[29] D. Shafer, “Gaussian to flat-top intensity distributing lens”, Opt. Laser Technol, vol.14, pp.159–160, 1982.
[30] R. Winston , H. Ries, “Nonimaging reflectors as functionals of the desired irradiance”, SPIE Nonimaging Optics Press, vol.2016, pp.1902–1908,1993.
[31] M. Bass, “Handbook of optics Ⅱ, 2th ED”, McGraw-Hill, New York, 1995.
[32] Virendra N., Mahajan, “ Optical Imaging and Aberrations ”, SPIE Optical Engineering Press, Bellingham, WA, 1998.
[33] W. Tai , R. Schwarte, “Design of an aspherical lens to generate a homogenous irradiance for three-dimensional sensors with a light-emitting-diode source”, Appl. Opt., Vol.39, pp.5801-5805, 2000.
[34] Fluorescence imaging: principles and methods, Technical manual, Amersham Pharmacia biotech.
[35] J. R. Leger, “Laser beam shaping”, a chapter in the book Microoptics, H. P. Herzig, ed., Taylor, Francis, London, pp.223–257, 1996.
[36] 黃淳權,“數值分析”, 全威圖書有限公司, pp. 482-487 , 民國八十九年。
[37] Breault Research Organization: The ASAP™ Primer
(http://www.breault.com/)
[38] M.C. Hutley, “Diffraction Gratings”, Academic Press, London, 1982.
[39] E.G. loewen,“Diffraction Grating and Applications”, Marcel Dekker, New York, 1997.
[40] J.W. Goodman, “Introduction to Fourier Optics, 2th ED”, McGraw-Hill, San Francisco, 1996.
[41] D.C. O’Shea, “Diffractive Optics: design, fabrication, and test”, SPIE Press, Bellingham, WA, 2003.
[42] 葉星輝,“生物晶片之螢光光學檢測”,國立中央大學光電科學研究所,碩士論文,民國九十四年。
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2006-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明