博碩士論文 93226045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.95.131.208
姓名 許隨贏(Sui-Ying Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 新型中空多模干涉分光器
(Novel hollow multimode interference splitters)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 表面電漿對於半導體發光元件光萃取效率的影響之探討
★ 半導體光子晶體雷射之研究★ 新型中空光波導研製與應用
★ 動態波長分配技術在乙太被動光纖網路的應用★ 禁止頻帶材料的光學與聲波特性研究
★ 漸變式光子晶體透鏡研究★ 光子晶體波導光束直進之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般的波導元件,由於必需滿足全反射的要求,所以中心核的折射率要比包覆層的折射率大。而光在波導中傳遞時,將無法避免掉材料色散的問題,而為了將色散問題減至最低,嘗試利用兩種不同介電質的多層膜做為波導包覆層,使中心核的介質為空氣,進而發展出中空波導。
在此論文中,我們利用半導體製程來完成中空全方向反射鏡波導,此種結構具有低損耗、低材料色散、低極化靈敏度等優點。而更進一步,將其應用在波導分光元件上,用來設計1x8的多模干涉分光器,而較傳統的絕緣層上鍍矽的1x8多模干涉分光器有較好的特性:低損耗、元件尺寸小、極化靈敏度低。
最後,為了改良傳統分光元件,在出口端必須加上彎曲波導以耦合光纖,而造成元件尺寸變大。發展出中空直角波導,除了保有原本中空全方向反射鏡波導的特點,更可適用於取代彎曲波導以縮小元件的面積。
摘要(英) In order to content the total reflection condition in the general waveguide device, the index of core must large than index of cladding layer. It doesn’t avoid the material dispersion. We develop a new waveguide structure with multilayer that has two dielectric materials in different refraction of index to confine light in air core.
In this study, we make an omni-directional reflector hollow waveguide with semiconductor fabrication. It has low loss, low material dispersion, and low polarization dependence properties. We applied the structure on the beam splitters to design one by eight multimode interference splitters; it has advantage than conventional silicon-on-insulation structure.
Finally, we develop the right angle waveguide to reduce device size that adds the S bend waveguide in device output to couple optical fiber. It keep the advantages of omni-directional reflector and more adaptable than the S bend waveguide in the outputs of multimode interference splitters.
關鍵字(中) ★ 多模干涉分光器
★ 中空波導
★ 直角波導
關鍵字(英) ★ multimde interference splitters
★ hollow waveguide
★ right angle waveguide
論文目次 第一章 導論 1
1.1 積體光學概論 1
1.2 光波導 2
1.3 光學分光器 4
1.4 動機 6
第二章 原理 9
2.1 布洛赫波 9
2.2 傳遞矩陣法 13
2.3 全方向反射鏡 16
2.4 多模干涉分光器 18
2.5 結論 21
第三章 設計模擬與製程 22
3.1 Si/SiO2多層膜設計 22
3.2 全方向反射鏡波導 22
3.3 製程 26
3.4 結論 28
第四章 多模干涉分光器 29
4.1 全方向反射鏡多模干涉分光器 29
4.2 模擬 30
4.3 製程 30
4.4 量測方法、結果與分析 32
4.5 比較 34
4.6 結論 36
第五章 中空直角波導 38
5.1 簡介 38
5.2 模擬 41
5.3 結論 45
第六章 結論與未來工作 47
6.1 結論 47
6.2 未來工作 48
參考文獻 49
參考文獻 第一章:
[1.1]E. Voges and A. Neyer, “Integrated-optic device on LiNbO3 for optical communication, ”J. Lightwave Technol., 5, pp.1129-1238, 1987.
[1.2] S. E. Miller, “Integrated Optics: An Introduction,” Bell Syst. Tech. J., vol. 48, no. 7, pp. 2059-2068, 1969.
[1.3]P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides, ”Rev. of Modern Physics, ” 49, pp.361-420, 1977.
[1.4]B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics, ” (Weily, 1991), Chapter 7.
[1.5]Y. Shani, R. C. Kistler, R. F. Kazarinow and K. J. Orlowski, “Integrated optics adiabatic devices on silicon,” IEEE J. Quantum Electron, 27, pp.556-566, 1991.
[1.6]H. Yamagawa, S. Nakamura and K. Ueki, “Broad-band High-Silica Optical Waveguide Star Coupler with Asymmetrical Directional Coupler,” J. Lightwave Technol., 8, pp.1298-1297, 1990.
[1.7]R. Ardar, C. H. Genry, R. F. Kazarinow, R. C. Kistler and G. R. Weber, “Adiabatic 3dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Lightwave Technol., 1, pp.46-50, 1992.
[1.8]S. Day, R. Bellerby, G. Gannell and M. Grant, “Silicon based fiber pigtailed 1x16 power splitter,” Electron. Lett., 10, pp.920-922, 1992.
[1.9]L.B. Soldano, E. C. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging Principles and Applications,” J. Lightwave Technol., 13, pp.615, 1995.
[1.10]邱華恭, “矽晶片波導元件研究,” 國立中央大學光電科學研究所碩士論文, 2005.
[1.11]T. J. Tayag, D. M. Mackie, G.. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photon. Tech. Lett., 7, pp.896-898, 1995.
[1.12]L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, J. Lightwave Technol., 10, pp.1843-1850, 1992.
[1.13]R. M. Jenkins, R. W. J. Devereux, J. M. Heaton, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenomena, “ Opt. Commun., 109, pp.410-424,1994.
[1.14] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers” Bell Syst. Tech. J. 43, pp. 1783-1809, 1964.
[1.15] E. Garmire, T. McMahon and M. Bass, “Propagation of infrared light in flexible hollow waveguide,” Appl. Opt. Vol. 15, pp. 145-150, 1976
[1.16] P. Yeh, A. Yariv and E. Marom, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am., 68, pp.1196-1202, 1978.
[1.17]M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.,49, pp.13-15, 1986.
[1.18]Y. Fink, J. N. Winn, S. Fan, Chiping Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, “A Dielectric Omnidirectional Reflector,” Science, 282, pp.1679-1682, 1998.
第二章:
[2.1]A. Yariv and P. Yeh, “Optical waves in crystals,” (Wiley, 1984) Chap. 6.
[2.2]李正中, “薄膜光學與鍍膜技術,” (藝軒圖書出版社, 2004)
[2.3]D. M. Pozar, “Microwave engineering,” 3rd ed, (Wiley, 2005) Chap. 2.
[2.4]J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection form a one –dimensional photonic crystal,” Opt. Lett. 23, 1573, 1998
[2.5]E. C. M. Pennings, R.van Roijen, M. J. N. van Stralen, P. J. Waard, R. G. M. P. Koumans and B. H. Verbeek, “Reflection properties of multimode interference devices,” IEEE Photon. Tech. Lett., 6, 6,1994.
[2.6]E. C. M. Pennings, “Bends in optical ridge waveguides: modeling and experiments,” Ph. D. Thesis, Delfr University of Technology, 1990.
[2.7]O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am., 63, pp.416-419, 1973.
[2.8]R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett., 27, pp.337-339, 1975.
[2.9]L. B. Soldano, M. Bouda, M. K. Smit and B. H. Verbeek, Proc. 18th ECOC, Paper Web10, pp.465-468, 1992.
[2.10]J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck and K. P. Hilton, Appl. Phys. Lett., 61, pp.1754-1756, 1992.
第三章:
[3.1]H. Y. Lee, H. Makino, T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55mm,” Appl. Phys. Lett., 81, pp.4502-4504, 2002.
[3.2]Y. Park, Y. G. Roh, C. O. Cho, H. Jeon, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett., 82, pp.2770-2772, 2003.
[3.3]K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, L. C. Kinerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett., 75, pp.3805-3807, 1999.
[3.4]S. S. Lo and C. C. Chen, “Air-core hollow optical waveguides with omnidirectional reflectors,” Optical Engineering, 45, 044601, 2006.
[3.5]S. S. Lo, C. H. Hou, H. T. Chien, F. L. Hsiao and C. C. Chen, “Hollow optical waveguides with omni-directional reflectors,” Optoelectronic Integration on Silicon II Proceedings of SPIE, 5730, pp.188-194, 2005.
[3.6]羅仕守, “新型中空光波導研製與應用,” 國立中央大學光電科學研究所博士論文, 2005.
[3.7] S.S. Lo, M.S.Wang, C.C. Chen, “Semiconductor hollow opticalwaveguides formed by omni-directionl reflectors“, Optics Express, Vol.12, pp.6589-6593, 2004.
[3.8] S. S. Lo, H. K. Chiu, C. C. Chen, S. C. Hsu, and C.Y. Liu, “Fabricating Low-Loss Hollow Optical Waveguides via Amorphous Silicon Bonding Using Dilute KOH Solvent,” IEEE Photo. Tech. Lett., 17, pp.2592-2594, 2005
[3.9]S. S. Lo, C. C. Chen, S. C. Hsu and C.-Y Liu, “Fabricating hollow optical waveguide for optical communication application” accepted by IEEE J. MEMS.(SCI, 2004 impact factor: 2.880)
第四章及第五章:
[5.1]R. G. Hunsperger “Integrated Optics: Theory and Technology,” 5th ed (Springer, 2002), Sect. 6.3.
[5.2]K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices: part II-S-shaped channel waveguide bends,” J. Lightwave Tech., 7, pp.1016-1021, 1989.
[5.3]P. L. Liu, B. J. Li, P. J. Cressman, J. R. Debesis, and S. Stoller, “Comparsion of measured losses of Ti:LiNbO3 channel waveguide bends,” IEEE Photon. Tech. Lett., 3, pp.755-756, 1991.
[5.4]蘇振嘉, “同調耦合式大角度彎曲光波導之研製,” 國立臺灣大學電機工程研究所碩士論文, 2001.
[5.5]H. F. Taylor, “Power loss at directional change in dielectric waveguide,” Appl. Opt., 13, pp642-647, 1974.
[5.6]H. F. Taylor, “Losses at corner bends in dielectric waveguides,” Appl. Opt., 16, pp.711-716, 1977.
[5.7]L. M. Johnson and F. J. Leonberger, “Low-loss LiNbO3 waveguide bends with coherent coupling,” Opt. Soc. Am., 8, pp.111-113,1983.
[5.8] J. J. Su and W. S. Wang, “Novel Coherently Coupled Multisectional Bending Optical Waveguide, ” IEEE Photon. Tech. Lett., 14, pp.1112-1114, 2002.
[5.9] C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-Density Integrated Optics,” J. Lightwave Tech., 17, pp.1682-1692, 1999.
[5.10]N. N. Rao, “Elements of Engineering Electromagnetics,” 5th ed. (Prentice Hall, 2000), Sect. 7.2.
[5.11] J. K. Love, “Application of a low-loss criterion to optical waveguide and devices, ” IEE Proc., 136, pp. 225-228, 1989.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2006-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明