博碩士論文 93226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.191.165.101
姓名 王良峯(Liang-Feng Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 表面輪廓連續起伏之光柵
(Fabrication of Grating with Continuous profile)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 介電電濕式數位微流體驅動系統之探討
★ 發光二極體照明系統之色彩特性優化設計★ 以EWOD為基礎的長鏈高分子原位合成器
★ 色盲量化測試系統之研究★ 可調式自然日光模擬光源之製作
★ 演色性評估之相關性指標★ 亞精胺影響下DNA構形與DNA碎片分佈之研究
★ 生物晶片之螢光光學檢測★ 生物晶片螢光分析之微光學模組
★ 光學式生化反應即時偵測系統★ 微液滴驅動之研究與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究發展以光阻熔融、粗糙化表面和結構翻模轉印的製程,製造表面輪廓連續起伏之光柵 (Fabrication of grating with continuous profile)。表面輪廓連續起伏之光柵的製作主要是將光阻旋轉塗布置粗糙化表面上,根據Wenzel和Cassie的理論,光阻依據結構作出最小能量的分佈,再利用加熱熔融使得光阻表面輪廓趨於連續球面分佈,最後再將製作好的光阻表面輪廓翻模轉印至矽膠 (Silicon Rubber)上。本研究建立出依據粗糙化表面的深寬比,與熔融後的光阻表面輪廓之曲率半徑的關係圖,作為日後製作不同參數之光柵的依據。在本研究中,量測表面輪廓連續起伏之光柵與二元式光柵的繞射效率,並且相互比較,實驗結果如理論預測一樣,表面輪廓連續起伏之光柵有較好的繞射分光效果。在此總結,本研究提出一種製造表面輪廓連續起伏之光柵的製程方法,其繞射分光效果比傳統的二元式光柵高。
摘要(英) This paper primarily concerns about making use of thermal, rough surface, structure printing to fabrication the grating with continuous profile. According to the theory of Wenzel and Cassie, we spin the photo-resist (PR) on rough surface. The PR will be offered the energy minimum depends on the geometric parameters of the surface. And the PR is heated above its glass transition temperature, the melting PR will change into a spherical profile for minimizing its surface energy. After reflow, we print the PR profile into silicon rubber.
Here, we establish the relationship between the aspect of the rough surface and the curvature of the PR. We compare the binary grating with the continuous profile grating. Moreover, the grating with continuous profile of diffraction efficiency is better than binary grating.
關鍵字(中) ★ 微光柵
★ 微光學元件
★ 熔融光阻
關鍵字(英) ★ Melting and Reflow
★ Micro-Optics
★ Micro-grating
論文目次 致謝 V
摘要 III
目錄 V
圖索引 VIII
第一章 緒論 1
第一節 研究背景 1
第二節 光柵發展概述 2
第三節 微光學元件之簡介 3
第四節 微光學元件發展之近況 7
第五節 研究動機 19
第二章 基本原理 22
第一節 熔融光阻 22
第二節 粗糙化表面 26
第三章 表面輪廓連續起伏之光柵設計 30
第一節 設計方法 30
第二節 設計步驟 38
第四章 製程 39
第一節 製作流程 39
第二節 熔融光阻製程 41
第四節 量測方法 47
第五章 量測結果 49
第一節 表面輪廓連續起伏之光柵的量測 49
第二節 微結構翻模轉印 53
第三節 繞射效率之比較 56
第六章 結論 65
第一節 研究成果 65
第二節 研究貢獻 68
第三節 未來發展 69
參考文獻 70
參考文獻 [1] M. C. WU, “Micromachining for Optical and Optoelectronic Systems”, IEEE, 85, NO.11, 1997.
[2] B. Morgan, J. Krizmanic, and R. Ghodssi. “Development of a deep silicon phase Fresnel lens Using gray-scale lithography and deep reactive ion etching”, Micromechanics and Microengineering, 13, 2004.
[3] Nussbaumyx, R Volkely, H. P. Herzigy,Design, M. Eisnerz and S. Haselbeckz, “Design, Fabrication and testing of microlens arrays for Sensors and Microsystems”, APPLIED OPTICS, 6, 617-636, 1997.
[4] M. E. Motamedi, “MOEMS”, SPIE, January 2005.
[5] D. C. O’Shea, T. J. Suleski, A. D. Kathman, D. W. Prather, “Diffractive Optics: Design Fabrication, and Test”, SPIE, June 2003.
[6] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays”, APPLIED OPTICS, 27, No.7, 1988.
[7] E.-B. kely, H.-J. Fuchs, A. Kilian, ”Fabrication of glass lenses by melting technology”, Proc. SPIE , 4440, 85-92, 2001.
[8] J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses”, SPIE, 3009, 89-98, 1997.
[9] M.-H. Wu and G. M Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography”, Micromechanics and Microengineering, 12, 747-758 , 2002.
[10] W.-X. Yu, X.-C. Yuan, N.-Q. Ngo, W.-X. Que, W.-C. Cheong and V. Koudriachov, “Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing”, OPTICS XPRESS, 10, 2002.
[11] K.-S. Chen, I.-K. Lin and F.-H. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies”, Micromechanics and Microengineering, 15, 1894-1903, 2005.
[12] B. Morgan, J. Krizmanic, and R. Ghodssi “Development of a deep silicon phase Fresnel lens Using gray-scale lithography and deep reactive ion etching”, Micromechanics and Microengineering, 13, 2004.
[13] T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer microlens arrays”, APPLIED OPTICS, 38 , 1999.
[14] S. Haselbeck, H.Schreiber, J. Schwider, N. Streibi, “Microlenses fabricated by melting a photoresist on a base layer”, SPIE, 32, 1322-1324, 1993.
[15] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays", APPLIED OPTICS. 27, 1281-1284, 1988.
[16] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist”, Meas. Sci. Technol. 1, 759-766, 1990.
[17] 韋乾佑, “以微電鑄法製造高填充率之微透鏡陣列模仁研究”, 國立台灣科技大學機械工程系碩士學位論文, 2005。
[18] H. Yang, C.-K. C., C.P. Lin and S.C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers." Micromechanics and Microengineering, 14, 277-282, 2004.
[19] M.G. Han, Y.J. Park, S.H. Kim, B.S. Yoo and H.H. Park, “Thermal and chemical stability of reflowed-photoresist microlenses”, Micromechanics and Microengineering, 14, 2004.
[20] Fowkes F M., “Contact angle, Wettability an adhesion”, Advances in Chemistry, Series 43 C. Washington. DC, 1-51, 1964.
[21] Kwok D. Y, Neumann A. W., “Contact angle measurement and contact angle interpretation” J, Advances in Colloid and Interface Science, 81, 167-249, 1999.
[22] Bartell F E, Shepard J W., “Surface roughness as related to hysteresis of contact angle”, Part I:The system-water-air” J., The Journal of Physical Chemistry, 57:211-215, 1953.
[23] Fowkes F M., “Contact angle, Wettability an adhesion”, Advances in Chemistry, Series 43 C. Washington. DC, 112-135, 1964.
[24] Eick J. D., Good R. J., Neumann A. W., “Thermodynamics of contact angles, Part II:rough solid surfaces” J., Journal of Colloid and Interface Science, 53, 235-248, 1975.
[25] Huh C., Mason S. G., “Effects of surface roughness on wetting” J., Journal of Colloid and Interface Science, 60,1 1-38, 1977.
[26] Good R J., “A thermodynamic derivation of Wenzel’s modification of Young’s equation for contact angles, together with a theory of hysteresis” J. Journal of American Chemical Society, 74, 5401-5402, 1952.
[27] Johnson R. E. Jr., Dettre R. H., “Contact angle hysteresis, Part III: Study of an idealized heterogeneous surfaces”, Journal of Physical Chemistry, 68, 1744-1749, 1964.
[28] Johnson R. E. Jr., Dettre R. H., “Contact angle hysteresis, Part IV: Contact angle measurments on heterogeneous surfaces” J., The Journal of Physical Chemistry, 69, 1507-1514, 1965.
[29] Schwartz L. W., Garoff S., “Contact angle hystresis on heterogeneous surface” J., Langrmuir, 1(2), 219-230, 1985.
[30] Marmur A., “Contact angle hysteresis on heterogeneous smooth surface” J. Journal of Colloid and Interface Science, 168, 40-46, 1994.
[31] Decker E. L., Garoff S., “Using vibration noise to probe energy barriers producing contact angle hysteresis” J., Langmuir, 12, 2100-2110, 1996.
[32] Decker E. L., Garoff S., “Using vibration noise to probe energy barriers producing contact angle hysteresis” J., Langmuir, 13, 6321-6332, 1997.
[33] Matijevic E., “Surface and Colloid Science” C., New York, Wiley-Interscience, 85-151, 1969.
[34] Timmons C. O., Zisman W. A., “The effect of liquid structure on contact angle hysteresis” J., Journal of Collid and Interface Science, 22, 165-171, 1966.
[35] Fadeev A. Y., McCarthy T. J., “Binary Monolayer mixtures:Modification of nanopores in silicon-supported tris(trimethylsiloxy) silyl monolayer” J., Langmuir, 15(21), 7238-7243, 1999.
[36] Chen W, McCarthy T. J. “Layer-Layer deposition: A tool for polymer surface modification” J., Macromolecules, 30(1), 78-86, 1997.
[37] Fadeev A. Y., McCarthy T. J., “Trialklsilane monolayers covalently attached to silicon surface: Wettability studies indicating that molecular topography contributes to contact angle hysteresis” J., Langmuir, 15 (11), 3759-3766., 1999.
[38] Youngblood J. P., McCarthy T. J., “Ultra-hydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma” J., Macromolecules, 32(20), 6800-6806, 1999.
[39] Sedev R. V., Petrov J. G., Neumann A. W., “Effect of swelling of polymer surface on advancing and receding contact angles” J., Journal of Colloid and Interface Science, 180, 36-42, 1996.
[40] Sedev R, V., Budziak C, J, Petrov J, G, “Dynamic contact angles at low velocities” J, 1993.
[41] Lam C. N. C., Kim N., Hui D., “The effect of liquid properties to contact angle hysteresis” J., Colloids and Surfaces A, 189, 265-278, 2001.
[42] Lam C. N. C., Ko L. H. Y., Yu L. M. Y., “Dynamic cycling contact angle measurement: Study of advancing and receding contact angles” J., Journal of Colloid and Interface Science, 243, 208-218, 2001.
[43] Wenzel R. N., Ind. Eng. Chem., 28, 988, 1936.
[44] Cassie A. B. D. and Baxter S. T., Faraday Soc., 40, 546, 1944.
[45] J. Lee, B. He and N. A. Patankar, “A roughness-based wettability switching membrane device for hydrophobic surfaces”, Micromechanics and Microengineering, 15, 2005.
[46] D. L. MacFarlane, V. Narayan, J. A.. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays”, IEEE Photonics Technology Letter, 6, 1112-1114, 1994.
[47] 葉星輝, 生物晶片之螢光光學檢測, 國立中央大學光電科學研究所碩士論文, 2005。
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明