博碩士論文 93226056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.207.133.13
姓名 張育誠(Yi-Chern Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
(Diode-pumped internally Q-switched Nd:MgO:PPLN laser)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究
★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器
★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件
★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統
★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器
★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究
★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究
★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究★ 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 體積小高功率的半導體雷射泵浦固態雷射在雷射測距、顯示科技、遠端感應、光儲存、生醫以及海底通訊等方面有許多令人感興趣的應用。而Q調制雷射技術提供一種能重複地生產高能鐳射脈搏的有效方法並且能大大提升雷射的峰值功率,因此對能產生輸出功率大於瓦特等級的微型化固態雷射而言,Q調制雷射已經變成一種重要技術。
另外藉由整合雷射共振腔內元件除了可以減少共振腔對雷射的損耗以及簡化雷射光路的校準,也同時可以達到縮減雷射系統體積的優點。在傳統的雷射系統中,雷射增益物質與其他共振腔內元件(例如Q開關、偏振片、非線性晶體等)是獨立分開的,也因此內建式Q調制雷射與內建式二倍頻雷射在追求系統微小化的過程中提供其他更好的選擇。在本篇論文中,我們率先嘗試在Nd:MgO:LiNbO3晶體上整合一塊週期性極化反轉鈮酸鋰晶體(PPLN)來作為電光(EO)式Q開關並加以完成輻射波長為1.085µm的小型半導體雷射泵浦固態雷射。我們成功製作一個Nd:MgO:PPLN並同時整合雷射增益與Q調製的功能。我們的論文中顯示了半導體雷射泵浦內建式Q調制Nd:MgO:PPLN雷射的功能與光學特型藉由一塊長度為12mm、週期為13.6µm的Nd:MgO:PPLN晶體來作為雷射Q開關。當我們對Nd:MgO:PPLN晶體以5kHz的頻率以及施加260V的電壓以及吸收功率為0.61W時來做Q調制時,我們測量到雷射平均功率為7.6mW以及脈衝寬度約30ns,經計算後得知脈衝峰值功率為55W而脈衝能量為1.6µm。本文中已經完成Q調制雷射的製作,以此為基礎加以延伸,再配合PPLN來做波長轉換,相信可以成功的製作出內建式腔內波長轉換元件。
摘要(英) Compact and powerful diode laser-pumped solid-state lasers are of
particular interest for many applications, such as laser ranging, display, remote
sensing, optical storage, biomedicine, and undersea communication. Laser
Q-switching technique has provided an efficient way of producing repetitively
high-energy laser pulses to greatly enhance the peak power of the laser and
therefore become an important technique in especially a miniature solid-state
laser for producing an output power >watt level.
In addition to the merit of system size reduction, monolithic integration of
laser intracavity elements has the obvious advantage of reducing the
difficulty with resonator loss and laser alignment. While conventional laser
systems have laser gain media operated separately to other intracavity
elements (e.g., the Q-switches, polarizers, nonlinear crystals, etc.),
self-(internal-)Q-switching and self-frequency-doubling lasers have given
good alternatives of further system miniaturization. In this work, we
demonstrated the first attempt of integrating an electro-optic (EO) PPLN
Q-switch in a Nd:MgO:LiNbO3 crystal to realize a compact diode-pumped
internally Q-switched solid-state laser radiating at 1.085μm. We have
successfully integrated a 12-mm long, 13.6-μm period EO Nd:MgO:PPLN in
a 17-mm long Nd:MgO:LiNbO3 laser gain medium. When the EO
Nd:MgO:PPLN Q-switch was driven by a 5 kHz, 260-V voltage pulse train
with a 300 ns pulse width, at 0.61-W absorbed pump power, we measured
~7.7 mW average power or 55 W peak power with 1.6-μJ pulse energy in
~30-ns laser pulse width. Since PPLN is characterized by its flexibility of
structure tailoring for phase-matching an arbitrary nonlinear wavelength
conversion process, the extension of currently developed internally
Q-switched Nd:MgO:PPLN laser to a monolithic all PPLN internally
Q-switched intracavity wavelength converter is promising.
關鍵字(中) ★ 準相位匹配
★ 電光
★ Q調製
★ 半導體雷射泵浦
★ 固態雷射
關鍵字(英) ★ Nd:MgO:LiNbO3
★ electro-optic Q-switch
★ quasi-phase-matching
★ diode-pumped solid-state laser
論文目次 Chapter 1 : Introduction…………………………………………………………..1
1.1 Motivation…………………………………………………………………….1
1.2 Quasi-Phase-Match (QPM) Technique for the Application of
Electro-Optic (EO) Periodic Poled Lithium Niobate (PPLN) ……………2
1.3 Periodic Poled Lithium Niobate (PPLN)…………………………………...4
1.4 Comparison of Laser Gain Medium………………………………………..6
1.5 DissertationOverview………………………………….................7
Chapter 2 : Theory of the Q-Switched Nd:MgO:PPLN Laser
2.1 The principle of electro-optic effect in LiNbO3……………………………9
2.2 Theory of EO PPLN……………………………………………………….12
2.3 Laser principle of the Q-Switched Nd:MgO:PPLN Laser……………...17
Chapter 3 : Fabrication of Nd:MgO:PPLN
3.1 Electric poling of the fabrication of Nd:MgO:PPLN…………………….21
3.2 Experimental setup of EO Nd:MgO:PPLN ……………………………..26
Chapter 4 : Experimental analysis
4.1 Experimental setup……………………………………………………......27
4.2 Experimental result……………………………………………………......29
Chapter 5 : Conclusion
5.1 Conclusion and the contribution of the thesis…………………………..33
5.2 Prospect…………………………………………………………………….34
Reference…………………………………………………………………………..35
參考文獻 [1] Masatoshi Fujimura, Takatomi Kodama, Toshiaki Suhara, and Hiroshi Nishihara, “Quasi-Phase-Matched Self-Frequency-Doubling Waveguide Laser in Nd: LiNbO3,” IEEE Photonics Tech. Lett. 12(11), 1513-1515, 2000
[2] C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K, Rochhausen, G. Schreiber, W. Sohler, H, Suche, R, Wessel, S, Balsamo, I, Montrosset, and D. Sciancalepore, “Advanced Ti:Er: LiNbO3 Waveguide Laser,” IEEE Journal of Selected Topics in Quantum Electronics. 6(1), 101-113, 2000
[3] Y.H. Chen and Y.C. Huang, “Active Q-switch Nd:YVO4 laser using an eletro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28(16), 1460-1462, 2003
[4] Yan-Qing Lu, Zhi-Liang Wan, Quan Wang, Yuan-Xin Xi, and Nai-Ben Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its application,” Appl. Phys. Lett. 77, 1719-3721, 2000
[5] A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J.Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneous in LiNbO3 and LiTaO3.” Appl. Phys. Lett. 9, 72-74, 1966
[6] G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive index damage of lithium niobate doped with different concentration of MgO, ”
[7] T.Y. Fan, A. Cordova-Plaza, M.J.F. Digonnet, R.L.Byer, and H.J. Shaw “Nd:MgO:LiNbO3 spectroscopy and laser devices” J. Opt. So. Am. B 3(1), 140-148, 1986
[8] L.Arizmendi, “Photonic application of lthium niobate crystal” Phys. Stat. Sol. (a), 201, No.2, 253-283, 2004
[9] Yan-Qing Lu, Y.Du, Y.B.Chen, S.N.Zhu, Y.Y.Zhu, N.B. Ming, and T.H.Xu “Domain reversal in Er:LN external field poling” Ferroelectrics 252 ,297-303, 2001
[10] Y.C. Huang, “Principle of Nonlinear Optics”, Course reader, National Tsinghua University, Taiwan, 2002
[11] See reference 4
[12] A. Yariv and P. Yeh, “optical wave in crystals, ” New York : John Wiley and Sons, 1994
[13] X.F. Chen, J.H. Shi, Y. Chen, Y. Zhu, Y. Xia and Y. Chen, “Elecro-optic Solc-type wavelength filter in periodically poled lithium niobate ”, Opt. Lett. 28(21), 2115-2117, 2003
[14] See reference 7
[15] L.F. Johnson and A.A. Ballman, “Coherent emission from rare erth ions in electro-optic crystal”, J. Appl. Phys. 40, 297-302, 1969
[16] Walter Koechner and Michael Bass, “Solid-state laser”, New York,Springer-Verlag, 2003
[17] J.J.Zayhowski and P.L.Kelley, “Optomization of Q-Switched Laser”, IEEE Journal of Quantum Electronics. 27,2220-2224, 1991
[18] G.K. Kitaeva, I.I.Naumova, A.A.Mikhailovsky, P.S. Losevsky and A.N.Penin, “Visible and infrared dispersion of the refractive indice in periodically poled and single domain Nd:MgO: LiNbO3 crystals”, Appl. Phys. B, 66, 201-205, 1998
[19] Gregory David Miller, “Periodically poled lithium niobate : modeling, fabrication, and nonlinear-optical performance”, 1998
[20] Atsuko Kuroda, Sunao Kurimura and Yoshiaki Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric field”, Appl. Phys. Lett. 69(11), 1565-1567, 1996
[21] See reference 7
[22] A.E.Siegman, “Lasers”, Chapter 26, 1986
[23] See reference 17
[24] O.Svelto, D.C.Hanna, “Principles of Lasers”, Sect. 5.3, 1989
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2006-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明