博碩士論文 93242010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.226.251.81
姓名 何飛宏(Fei-hung Ho)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Poincaré Gauge Theory with Coupled Even and Odd Parity Spin-0 Dynamic Connection Modes: Isotropic Bianchi Cosmologies
(Poincaré Gauge Theory with Coupled Even and Odd Parity Spin-0 Dynamic Connection Modes: Isotropic Bianchi Cosmologies)
相關論文
★ Kerr-Sen 時空的準局域能量與角動量★ Brill 波時空於特殊正交坐標系的初值問題之數值解
★ Teleparallel重力理論中的準局域能量、動量和角動量★ 度規仿射重力理論中的準局域能量-動量
★ 廣義相對論理論中之準局域質心距★ 幾何代數與微分形式間之轉換及其在重力之應用
★ 幾何代數下的旋量與重力場正能量★ 幾何代數與Clifforms之轉換及其於重力哈密頓函數與準局域量之應用
★ Teleparallel 理論中之準局域質心距★ 廣義相對論的準局域量的小球極限
★ 重力場中準局域角動量的旋子表述★ 有Torsion效應的宇宙
★ 準區域的膺張量和陳聶式子★ 準局部能量與參考系之選擇
★ 在Kerr幾何的特殊正交座標系和狄拉克旋子★ 球對稱時空的準局域能量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在理解新的動態的龐加萊規範重力理論 (BHN PG model)。此理論中,在簡單與值得探討的情況下,只針對純旋量(spin-0+)與贋純旋量(spin-0-)中之奇耦合與偶耦合與奇偶耦合加以討論,以尋求可觀測又有趣的物理結果。同時,又是基於相對簡單且有意義值得探討的原因,我們將均勻又各向同性的宇宙模型作為背景加以研究;更確切的說,把比安奇(Bianchi) A類的宇宙模型作為研究背景(現代標準宇宙模型就在此類中),將可找到對應有效的拉格朗日(Lagrangian)與哈密爾頓(Hamiltonian)動態系統。此宇宙模型的拉格朗日方程可導出一組描述此宇宙的微分方程,此組方程與BHN PG model以標準宇宙模型為背景導出之描述宇宙尺度之方程式一致。以此結果作為基礎,再有變化的、詳細的、深入的研討這組微分方程:取曲率為常數、線性化此組微分方程並找出系統震盪的簡振模式(normal modes)以描述現在的宇宙、數值演化此宇宙模型以說明奇偶耦合常數對現代宇宙的影響。此研究可說明宇宙加速膨脹的現象與動態的旋量產生的看不見的繞率對宇宙的影響。
摘要(英) We are investigating the dynamics of a new Poincaré gauge theory of gravity model,the BHN PG model which has cross coupling between the spin-0^+ and spin-0^- modes, in a situation which is simple, non-trivial, and yet may give physically interesting results that might be observable. To this end we here consider a very appropriate situation—homogeneous-isotropic cosmologies—which is relatively simple, and yet all the modes have non-trivial dynamics which reveals physically interesting and possibly observable results. More specifically we consider manifestly isotropic Bianchi class A cosmologies; for this case we find an effective Lagrangian and Hamiltonian for the dynamical system. The Lagrange equations for these models lead to a set of first order equations that are compatible with those found for the FLRW models and provide a foundation for further investigations. The constant curvature case is investigated. The first order equations are linearized and the normal modes are found. These turn out to control the asymptotic late time cosmological normal modes. Numerical evolution confirms the late time asymptotic approximation and shows the expected effects of the cross parity pseudoscalar coupling.
關鍵字(中) ★ 龐加萊規範理論
★ 比安其宇宙模型
★ 宇稱不守恒耦合常數
關鍵字(英) ★ Poincaré Gauge Theory
★ Bianchi Cosmology
★ Parity violating coupling constant
論文目次 1 Introduction 1
1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Overview of PG Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Good Dynamic Scalar Modes . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Mystery of the Accelerating Expansion of the Universe . . . . . . . . . . 3
1.1.4 Odd Parity Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Poincaré Gauge Theory of Gravity 5
2.1 Poincaré Gauge Theory of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Isotropic Bianchi I and IX PGT with Odd Terms in Cosmology 10
3.1 FLRW Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Bianchi I and IX Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Effective Lagrangian and Hamiltonian Analysis 13
4.1 Effective Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.1 Dynamical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Hamilton equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Further Analysis 21
5.1 Constant Curvature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Linearized Equations and Normal Modes . . . . . . . . . . . . . . . . . . . . . 23
5.3 Late Time Asymptotic Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Numerical Demonstration 28
6.1 Numerical Evolution for Constant Curvature Case . . . . . . . . . . . . . . . . . 28
6.2 Numerical Test for Linearized Model . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 The Effect of Odd Coupling Parameters . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Typical Full Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 Accelerating Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Summary, Discussion and Conclusion 41
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.1 Where We Came From . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.2 On the Road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.3 Continuing on the Trajectory of the Road . . . . . . . . . . . . . . . . . 42
7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A Appendix 45
A.1 Comparing Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Bibliography 46
參考文獻 [1] J. D. Jackson, Classical Electrodynamics , 3rd Edition (New York: Wiley, 1998). 1
[2] F. W. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester, Rev. Mod. Phys. 48 (1976) 393. 1, 5
[3] J. M. Nester, “Gravity, torsion and Gauge theory”, in Introduction to Kaluza-Klein theories, ed H.C. Lee (World Scientific, Singapore, 1984), pp 83–115. 1, 5
[4] F.W. Hehl: Four lectures on Poincaré gauge theory, in: Proc. of the 6th Course of the School of Cosmology and Gravitation on Spin, Torsion, Rotation, and Supergravity, held at Erice, Italy, May 1979, P.G. Bergmann, V. de Sabbata, eds. (Plenum, New York 1980) pp. 5–61
[see http://www.thp.unikoeln.de/gravitation/mitarbeiter/Erice1979.pdf]. 1, 5, 8
[5] F. W. Hehl in Proc. of 6th Course of the International School of Cosmology and Gravitation on Spin, Torsion and Supergravity, eds. P.G. Bergmann and V. de Sabbata (New York: Plenum, 1980), p. 5. 1, 5
[6] K. Hayashi and T. Shirafuji, Prog. Theor. Phys. 64 (1980) 866, 883, 1435, 2222. 1, 2, 5
[7] E. W. Mielke, Geometrodynamics of Gauge Fields,(Berlin: Akademie-Verlag, 1987). 1, 5
[8] F. W. Hehl, J. D. McCrea, E. W. Mielke and Y. Neeman, Phys. Rep. 258 (1995) 1. 1, 5
[9] F. Gronwald and F. W. Hehl, “On the Gauge Aspects of Gravity”, in Proc. 14th Course of the School of Gravitation and Cosmology (Erice) , eds. P.G. Bergmann, V. de Sabbata, and H.J. Treder (Singapore: World Scientific, 1996), p. 148–98. 1, 5
[10] M. Blagojevi´c, Gravitation and Gauge Symmetries, (Bristol: Institute of Physics, 2002). 1, 5
[11] E. Sezgin and P. van Nieuwenhuizen, Phys. Rev. D 21 (1980) 3269. 2
[12] M. Blagojevi´c and I. A. Nicoli´c, Phys. Rev. D 28 (1983) 2455. 2
[13] H. Chen, J. M. Nester and H.-J. Yo, Acta Phys. Pol. B 29 (1998) 961. 2, 41
[14] R. Hecht, J. M. Nester and V. V. Zhytnikov, Phys. Lett. A 222 (1996) 37. 2, 41
[15] H.-J. Yo and J. M. Nester, Int. J. Mod. Phys. D 8 (1999) 459. 2, 7, 41
[16] H.-J. Yo and J. M. Nester, Int. J. Mod. Phys. D 11 (2002) 747. 2, 7, 41
[17] S. M. Carroll and G. B. Field, Phys. Rev. D 50 (1994) 3867. 2, 42, 43
[18] A. S. Belyaev and I. L. Shapiro, Nucl. Phys. B543 (1999) 20. 2, 43
[19] I. L. Shapiro, Phys. Rep. 357 (2002) 113. 2, 43
[20] A. G. Riess , et al., Astron. J. 116 (1998) 1009; S. Perlmutter, et al., Astrophys. J. 517 (1999)
565. 3, 39
[21] W. M. Wood-Vasey, et al., Astrophysical Journal, (2007) 666, 694. 3
[22] P. Astier, et al., Astronomy and Astrophysics, (2006) 447, 31. 3
[23] P. J. E. Peebles and B. Ratra Rev. Mod. Phys. 75 (2003) 559. 3
[24] T. Padmanabhan, Phys. Rep. 380 (2003) 235. 3
[25] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753. 3
[26] R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582. 3
[27] S. M. Carroll, Phys. Rev. Lett. 81 (1998) 3067. 3
[28] K. R. S. Balaji and R. H. Brandenberger. Phys. Rev. Lett. 94 (2005) 031301. 3
[29] K.-F. Shie, J. M. Nester and H.-J. Yo, Phys. Rev. D 78 (2008) 023522. 3, 7, 10, 22, 28, 39, 41, 42, 43, 45
[30] H. Chen, F.-H. Ho, J. M. Nester, C.-H. Wang and H.-J. Yo, J. Cosmol. Astropart. Phys. JCAP10 (2009) 027. 3, 4, 7, 10, 13, 14, 23, 25, 28, 31, 34, 39, 41, 42, 45
[31] A. V. Minkevich, Phys. Lett. A 80 (1980) 232. 3, 10
[32] A. V. Minkevich, Phys. Lett. A 95 (1983) 422. 3, 10
[33] A. V. Minkevich and I. M. Nemenman, Class. Quant. Grav. 12 (1995) 1259. 3, 10
[34] A. V. Minkevich and A. S. Garkun, Class. Quant. Grav. 23 (2006) 4237. 3, 10, 43
[35] A. V. Minkevich, A. S. Garkun and V. I. Kudin, Class. Quant. Grav. 24 (2007) 5835. 3, 10
[36] H. Goenner and F. Müller-Hoissen, Class. Quant. Grav. 1 (1984) 651. 3, 10
[37] H.-J. Yo and J. M. Nester, Mod. Phys. Lett. A 22 (2007) 2057. 3, 7, 10, 41, 43
[38] X.-Z. Li, C.-B. Sun and P. Xi, Phys. Rev. D 79 (2009) 027301. 3, 10, 43
[39] X.-Z. Li, C.-B. Sun and P. Xi, J. Cosmol. Astropart. Phys. JCAP04 (2009) 015. 3, 10, 43
[40] X.-C. Ao, X.-Z. Li and P. Xi, Phys. Lett. B 694 (2010) 186. 3, 10, 43
[41] C.-H. Wang and Y.-H. Wu, Class. Quant. Grav. 26 (2009) 045016. 3, 10, 43
[42] P. Baekler, F. W. Hehl and J. M. Nester, Phys. Rev. D 83 (2011) 024001. 3, 6, 8, 10, 11, 14,
42, 45
[43] F.-H. Ho and J. M. Nester, Poincaré gauge theory with even and odd parity dynamic connection modes: isotropic Bianchi cosmological models, to appear in Journal of Physics: Conference Series, eds. L. Horwitz and M. Land (2011), arXiv:1106.5001 3
[44] F.-H. Ho and J. M. Nester, Poincaré gauge theory with coupled even and odd parity dynamic spin-0 modes: dynamical equations for isotropic Bianchi cosmologies, arXiv:1106.0711. 3
[45] F.W. Hehl, J. D. McCrea, E.W. Mielke and Y. Ne’eman, Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rept. 258, 1–171 (1995). 4, 5, 6
[46] R. P.Wallner, On the structure of gravitational U4-field equations, Gen. Rel. Grav. 17, 1081-1107 (1985). 6
[47] J. D. McCrea, Irreducible decompositions of non-metricity, torsion, curvature and Bianchi identities in metric-affine spacetimes, Class. Quant. Grav. 9, 553–568 (1992). 6
[48] Y. N. Obukhov, Poincaré gauge gravity: Selected topics, Int. J. Geom. Meth. Mod. Phys. 3, 95–138 (2006) [arXiv:gr-qc/0601090]. 6
[49] D. Vassiliev, Quadratic metric-affine gravity, Annalen Phys. (Leipzig) 14, 231–252 (2005) [arXiv:gr-qc/0304028]. 6
[50] H.-T. Nieh and M.-L. Yan, J. Math. Phys. 23 (1982) 373. H.-T. Nieh, Int. J. Mod. Phys. A 22 (2007) 5237. 6
[51] P. Baekler and F. W. Hehl, Beyond Einstein-Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity including all boundary terms, arXiv:1105.3504. 6
[52] A. Ashetkar and J. Samuel, Class. Quant. Grav. 8 (1991) 2191. 13, 43
[53] H. Goldstein, C. Poole and J. Safko, Classical Mechanics, 3rd Edition (San Francisco: Addison Wesley, 2001). 25
[54] A. G. Riess, et al., Astrophys. J. 607 (2004) 665. 39, 40
[55] T. C. P. Chui and W.-T. Ni, Phys. Rev. Lett. 71 (1993) 3247. 43
[56] W.-T. Ni, Class. Quant. Grav. 13 (1996) A135. 43
[57] L.-N. Chang and C. Soo, Class. Quant. Grav. 20 (2003) 1379. 43
[58] S. Capozziello, G. Iovane, G. Lambiase and C. Stornaiolo Europhys. Lett. 46 (1999) 710. 43
[59] M. Brüggen, Gen. Rel. Grav. 31 (1999) 1935. 43
[60] V. A. Kostelecky, N. Russell, and J. D. Tasson, Phys. Rev. Lett. 100 (2008) 111102. 44
[61] S. Capozziello, S. Carloni and A. Troisi, Recent Res. Dev. Astron. Astrophys. 1 (2003) 625. 44
[62] S. Capozziello, V. F. Cardone, E. Piedipalumbo, M. Sereno and A. Troisi, Int. J. Mod. Phys.
D 12 (2003) 381. 44
指導教授 聶斯特(James M. Nester) 審核日期 2011-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明