博碩士論文 93246001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.102.187
姓名 藍孝晉(Hsiao-Chin Lan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用矽微製程技術於微型化光學連結之研究
(Research on Miniaturized Optical Interconnects Using Silicon Micromachining Technology)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要係利用矽微製程技術發展一具微型化矽基光學連結架構之元件與模組的相關研究。元件部分的研究可細分為晶片間與晶片內之光子元件開發,晶片間元件包含有:矽45°微反射面製程技術、繞射元件單石整合至矽45°微反射面之新型光學元件開發;晶片內元件是以SOI材料為主要基板,相關的研究包含有:具相位補償微稜鏡之大角度彎曲波導、與分具寬頻或窄頻帶寬的兩種波導濾波器之理論探討。模組部分的研究,則是利用矽微光學平台技術實現一個具微型化之光收發器模組。
在晶片間光學連結之元件研究上,我們發展了一具高深度且高光學品質的矽45°微反射面製程技術,利用KOH與IPA的混合蝕刻溶液,可以在晶向為(100)之矽晶片上,蝕刻深度可達200微米以上,而該深度上的製程誤差小於5%,且表面粗糙度小於20 奈米之45°微反射面,它可以使得光束在矽微光學平台上達到非共平面的偏折。我們接著延伸這個技術,將繞射元件單石化整合至該矽45°微反射面上,它可以使得光束偏折且聚焦於非共平面上的特定位置;此外,橢圓對稱的繞射元件結構有效地消弭該光學系統的離軸像差。該元件實驗的結果顯示,在600微米的工作距離下,可以將一發散的光束偏折90°且同時聚焦,使得收斂後的光點大小僅達15微米,可有效的與單/多模光纖之耦合匹配。
在晶片內光子元件部分,我們發展了彎曲波導與光學濾波器,這些元件均可單石化整合至SOI晶片之脊型光波導架構上,且元件大小僅數微米見方,可以達到光子元件之高密度堆積期待。在彎曲波導部分,我們首次引入一具相位補償之微稜鏡,使得波導的特徵模態波前在彎角處能正確偏折,以抑止輻射損耗的產生。為了達到能自由角度偏折的彎曲波導,在利用BCB材料作為微稜鏡之填充介質下,我們具體驗證10°、 20°、30°、與40°之波導彎曲的效果,其曲率半徑僅達15.4微米,而彎曲損耗最低能達3.43 dB,未來若能進一步改善介面間的反射損耗,還可以有效降低彎曲損耗至1 dB水平。在光學濾波器部分,我們理論探討了一具導波模態共振效應的次波長光柵於SOI平面光波光路上,在矽材與空氣之高折射率反差而對光波的強調制作用下,一個有限寬度的波導模態經由這個光柵結構的作用,就可以達到光學濾波上的收斂,使得穿透光譜的消光比達到14.93 dB,且在0.5 dB的損耗水平下,穿透帶寬可以達到40奈米以上。我們也利用分佈式布拉格反射鏡的濾波器架構,可以設計出半高全寬僅3奈米的穿透譜線,若經由適當的反射鏡層數增加,還可以降低至1奈米以下之帶寬。這兩種波導濾波器可以提供未來具分波多工架構之超高速光連結準備。
最後,我們具體呈現一個具微型化之光收發器模組,利用微機電製程之矽微光學平台技術可單石整合45°微反射面、V型槽、高頻傳輸線、與金錫合金之焊料點等。在這個架構下,可以利用被動對準技術將光電元件與光纖高精度鍵合至該平台上。而由於面射型雷射/光偵測器與光纖之工作距離甚近,僅180微米,無須引入透鏡聚焦就可享有高耦合效率,達到高光學利用率、高精度、且兼具量產可行性之優勢。實驗結果顯示,雷射與多模光纖的耦合效率高於-5.65 dB,多模光纖與光偵測器的耦合效率高於-1.98 dB,1-dB損耗的橫向對位容忍度大於±20微米,且在2.5 Gbps之高速訊號作用下,收/發端均可得到清晰可鑑別的眼圖量測結果。
摘要(英) In this dissertation, the researches focus on the development of the components and modules under a miniaturized silicon-based optical interconnect configuration. The component part can be further divided into two research topics, including inter-chip and intra-chip photonics elements, respectively. The former researches contain the development of the silicon 45° micro-reflectors and a monolithic integration of a diffractive optical element on the silicon 45° micro-reflectors; the latter researches comprise the wide-angle SOI-based waveguide bend combined with a phase-compensated microprism, and two types of SOI-based waveguide filters aiming to narrow and widely-flattened bandwidths, respectively, in spectra response. Regarding the research in module application, a miniaturized optical transceiver module is realized by using silicon optical bench (SiOB) technology.
With respect to the researches on the inter-chip optical interconnect components, we first demonstrate a silicon 45° micro-reflector with a deep depth and smooth slant quality. By using the KOH/IPA mixed etchant, the silicon 45° micro-reflector can be fabricated on the common (100) silicon wafers. The etching depth of this 45° slant can be over than 200 μm with the etching depth inaccuracy less than 5% and the slant RMS roughness under 20 nm. Therefore, this 45° slant can act as a great micro- reflector, which makes the light beams propagating on the SiOB deflect to the non-coplanar direction. Then, we further extending this technique to monolithically integrate a diffractive optical element (DOE) lens onto the silicon 45° micro-reflector. This novel optical element can make light beams simultaneously deflect and focus to the specific position in the non-coplanar direction. In addition, this DOE lens with an elliptic-symmetry shape can effectively eliminate the off-axis aberration within this optical system. Under the 600-μm working distance, the experimental results reveal that a diverged light beam can be deflected to the non-coplanar direction and focused with a spot size of only 15 μm, which would facilitate the single-/multi-mode fiber coupling issues.
Regarding the intra-chip photonics components, the waveguide bends and waveguide filters are developed in this research topic. These components can be monolithically integrated onto the SOI-based rib waveguide platform. In addition, the sizes of these components are only a couple of micrometer squares, which can fit the high-density integration expectation for the intra-chip photonics. For the wide-angle waveguide bend, a phase-compensated microprism is introduced into the SOI rib waveguides in order to correctly tilt the wavefront of the waveguide eigen-mode and effectively suppress the radiation loss. The bending angles with 10°, 20°, 30°, and 40° cases are demonstrated to examine the effects of the arbitrary optical paths. Under filling the BCB material to the microprism area, the compact bending radius and bending loss are only 15.4 μm and 3.43 dB, respectively. After improving the interface Fresnel losses in the next design, the bending losses could be effectively suppressed to only 1 dB. For the waveguide filters, we theoretically investigate a silicon sub-wavelength grating, possessing the guided-mode resonance (GMR) effects, on the SOI rib waveguide. Based on the design of a strongly-modulated effect, a finite-sized waveguide mode passing this grating can converge with an extinction ratio of 14.93 dB in optical spectral response. In addition, the transmissive flattened bandwidth can be available to over 40 nm in 0.5-dB degradation. We also apply the distributed Bragg reflectors (DBR) grating to design a 3-nm narrow bandwidth in full width at half maximum (FWHM). Less than the bandwidth with 1-nm FWHM could be expected by properly increasing the DBR layers. Both mentioned waveguide filters can serve the future requirements of the ultra-high-speed optical interconnects by introducing the wavelength-division multiplexing (WDM) approaches.
Finally, compact and passive-alignment 4-channel ? 2.5-Gbps optical interconnect modules including transmitting and receiving parts are developed based on the SiOBs of 5 ? 5 mm2. A silicon-based 45° micro-reflector and V-groove arrays are fabricated on the SiOB using anisotropic wet etching. Moreover, 2.5-GHz high-frequency transmission lines with 4 channels, and bonding pads with Au-Sn eutectic solder are also deposited on the SiOB using evaporating. The vertical-cavity surface-emitting laser (VCSEL) array and photo-detector (PD) array are flip-chip assembled on the intended positions. The multi-mode fiber (MMF) ribbons are passively aligned and mounted onto the V-groove arrays using UV curing. Without the assistance of additional optics, the coupling efficiencies of VCSEL-to-MMF in the transmitting part and MMF-to-PD in the receiving part can be as high as -5.65 and -1.98 dB, respectively, under an optical path of 180 μm. The 1-dB coupling tolerance of greater than ±20 μm is achieved for both transmitting and receiving parts. Eye patterns of both parts are demonstrated using 15-bit PRBS at 2.5 Gbps.
關鍵字(中) ★ 光電收發模組
★ 波導光柵
★ 彎曲波導
★ 光學耦合器
★ 矽光子
★ 矽微製程
★ 矽微光學平台
★ 光學連結
關鍵字(英) ★ Optoelectronic Transceiver Module
★ Waveguide Filter
★ Waveguide Bend
★ Optical Coupler
★ Silicon Photonics
★ Silicon Micromachining
★ Silicon Optical Bench
★ Optical Interconnect
論文目次 Abstracts I
Abstracts in Chinese ΙV
Acknowledgements VΙ
Contents VII
Figure Lists X
1. Introduction 1
1.1 Bottleneck of Inter- / Intra-Chip Interconnects via Copper Wires 3
1.2 Inter-Chip Optical Interconnect in IT Applications 6
1.3 Intra-Chip Optical Interconnects by Silicon Photonics Approach 10
1.4 Research Objectives in This Dissertation 14
2. Monolithic 45° Micro-Reflector Based on Silicon Optical Benches 19
2.1 Introduction 19
2.2 Characterization of Silicon Wet Etching Process 21
2.3 Fabrication of Monolithic 45° Slant on (100) Silicon Wafer 23
2.4 Surface Quality Evaluation for 45° Silicon Micro-Reflector 26
2.5 Summary 27
3. Monolithic Integration of Diffractive Optical Element on Silicon-Based 45° Micro-Reflector 28
3.1 Introduction 29
3.2 Design of Silicon DOE on 45° Micro-Reflector 32
3.3 Fabrication and Evaluation of Silicon DOE on 45° Micro- Reflector 36
3.4 Summary 40
4. Compact Silicon-on-Insulator Rib Waveguide Bends Combined with Phase-Compensated Microprism 41
4.1 Introduction 42
4.2 Design of SOI Waveguide with Phase-Compensated Microprism 44
4.3 Fabrication Process and Discussion of Experimental Result 47
4.4 Summary 51
5. Monolithically Integrated Waveguide Filter on SOI-Based Planar Lightwave Circuits 52
5.1 Introduction 52
5.2 Guided-Mode Resonance Filter in Free-Space Operation 54
5.3 Monolithically Integrated GMR Filter on SOI Rib Waveguide 63
5.4 Monolithically Integrated DBR Filter on SOI Rib Waveguide 69
5.5 Summary 73
6. Compact and Passive-Alignment 4-Channel × 2.5-Gbps Optical Interconnect Modules Based on Silicon Optical Benches with 45° Micro-Reflectors 74
6.1 Introduction 75
6.2 Optical Characteristics of SiOB-Based Optical Interconnect Modules 78
6.3 Fabrication of SiOB for Optical Interconnect Module 81
6.4 Assembly and Characterization of Optical Interconnect Modules 84
6.5 Summary 90
7. Conclusion and Future Works 91
References 97
Publication Lists 104
參考文獻 [1]. N. Savage, “Linking with light,” IEEE Spectr. vol. 39, no. 8, pp. 32–36, 2002.
[2]. M. Haurylau, C. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1699–1705, 2006.
[3]. M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, A. Vakali, “Cloud computing: Distributed internet computing for IT and scientific research,” IEEE Internet Computing, vol. 13, no. 5, pp. 10-13, 2009.
[4]. A. C. Alduino, M. J. Paniccia, “Method and apparatus providing an electrical-optical coupler, ” U.S. Patent No. 7,306,378, 2007.
[5]. T. Hino, R. Kuribayashi, Y. Hashimoto, T. Sugimoto, J. Ushioda, J. Sasaki, I. Ogura, I. Hatakeyama, and K. Kurata, “A 10 Gbps x 12 channel pluggable optical transceiver for high-speed interconnections,” in IEEE Electronic Components and Technology Conference, pp. 1838–1843, 2008.
[6]. I. Hatakeyama, K. Miyoshi, J. Sasaki, K. Yamamoto, M. Kurihara, T. Watanabe, J. Ushioda, Y. Hashimoto, R. Kuribayashi, and K. Kurata, “A 400 Gbps backplane switch with 10 Gbps/port optical I/O interfaces,” in Proc. SPIE 6014, pp. 60140J, 2005.
[7]. S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Lightw. Technol., vol. 24, no. 2, pp. 927-934, 2006.
[8]. X. Wang and R. T. Chen, “Fully embedded board level optical interconnects — from point-to-point interconnection to optical bus architecture,” in Proc. SPIE 6899, pp. 689903, 2008.
[9]. L. Wang, J. Choi, X. Wang, R. T. Chen, D. Hass, and J. Magera, “Thin film optical waveguide and optoelectronic device integration for fully embedded board level optical interconnects,” in Proc. SPIE 5556, pp. 1-14, 2004.
[10]. F. Mederer, R. Michalzika, J. Guttmannb, H. P. Huberb, B. Lunitzb, J. Moiselb, and D. Wiedenmannc, “10 Gb/s data transmission with TO-packaged multimode GaAs VCSELs over 1 m long polymer waveguides for optical backplane applications,” Opt. Commun., vol. 206, no. 4-6, pp. 309-312, 2002.
[11]. D.V. Plant, M. B. Venditi, E. E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, and J. S. Ahearn, “256-channel bidirectional optical interconnects using vessels and photodiodes on cmos,” IEEE J. Lightwave Technol., vol. 19, no. 8 pp. 1093–1103, 2001.
[12]. Intel’s official website: http://techresearch.intel.com/articles/None/1813.htm
[13]. A. Barkai, Y. Chetrit, O. Cohen, R. Cohen, N. Elek, E. Ginsburg, S. Litski, A. Michaeli, O. Raday, D. Rubin, G. Sarid, N. Izhaky, M. Morse, O. Dosunmu, A. Liu, L. Liao, H. Rong, Y. Kuo, S. Xu, D. Alduino, J. Tseng, H. Liu, and M. Paniccia, “Integrated silicon photonics for optical networks,” OSA J. Opt. Netw., vol. 6, no. 1, pp. 25–47, 2007.
[14]. S. Hwang, J. An, M. Kim, W. C. Choi, S. Cho, S. Lee, H. Cho, and H. Park, “VCSEL array module using (111) facet mirrors of a V-grooved silicon optical bench and angled fibers,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 477–479, 2005.
[15]. F. Delpiano, B. Bostica, M. Burzio, P. Pellegrino, and L. Pesando, “10-channel optical transmitter module operating over 10 Gb/s based on VCSEL and hybrid integrated silicon optical bench,” in Proc. ECTC, pp. 759–762, 1999.
[16]. L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.
[17]. David A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” in Proc. of the IEEE, vol. 88, no. 6, pp. 728-749, 2000.
[18]. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1678–1687, 2006.
[19]. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1688–1698, 2006.
[20]. Intel’s official website: http://techresearch.intel.com/articles/Tera-Scale/1419.htm?iid=pr_smrelease_photonics_rellinks1
[21]. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature, vol. 433, pp. 292–294, 2005.
[22]. R. Soref and B. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123–129, 1987.
[23]. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327, 2005.
[24]. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express, vol. 13, no. 8, pp. 3129–3135, 2005.
[25]. J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. Ö. Ilday, F. X. Kärtner, and J. Yasaitis, “High- performance, tensile-strained Ge p-i-n photodetectors on a Si platform,” Appl. Phys. Lett., vol. 87, pp. 103501 (2005);
[26]. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and Mario J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express, vol. 15, no. 21, pp. 13965–13971, 2007.
[27]. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro, vol. 26, no. 2, pp. 58–66, 2006.
[28]. G. T. Reed and A. P. Knights, Silicon Photonics: an Introduction (John Wiley & Sons Ltd., 2004), Ch. 4.
[29]. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron., 27, pp. 1971–1974, 1991.
[30]. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers,” IEEE J. Quantum Electron., vol. 38, no. 7, pp. 949–955, 2002.
[31]. M. T. W. Ang, G. T. Reed, A. P. Vonsovici, A. G. R. Evans, P. R. Routley, T. Blackburn, and M. R. Josey, “Grating couplers using silicon on insulator,” in Proc. SPIE 3620, pp. 79–86, 1999.
[32]. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett., vol. 29, no. 23, pp. 2749–2751, 2004.
[33]. O. Powell and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” J. Micromech. Microeng., vol. 11, pp. 217–220, 2001.
[34]. W. Fan and D. Zhang, “A simple approach to convex corner compensation in anisotropic KOH etching on a (1 0 0) silicon wafer,” J. Micromech. Microeng., vol. 16, pp. 1951–1957, 2006.
[35]. G. D. Boyd, L. A. Coldren, F. G. Storz, “Directional reactive ion etching at oblique angles,” Appl. Phys. Lett., vol. 36, no. 7, pp. 583–585, 1980.
[36]. M. Madou, Fundamentals of Microfabrication (CRC Press, 1997), Ch. 4.
[37]. I. Zubel and I. Barycka, “Silicon anisotropic etching in alkaline solutions I: The geometric description of figures developed under etching Si (100) in various solutions,” A Sens. Actuators, vol. 70, pp. 250–259, 1998.
[38]. I. Zubel, “Silicon anisotropic etching in alkaline solutions II: On the influence of anisotropy on the smoothness of etched surfaces,” A Sens. Actuators, vol. 70, pp. 260–268, 1998.
[39]. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si (100) anisotropic etching in KOH and KOH+IPA solutions,” A Sens. Actuators, vol. 84, pp. 116–125, 2000.
[40]. I. Zubel, I. Barycka, K. Kotowska, and M. Kramkowska, “Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process,” A Sens. Actuators, vol. 87, pp. 163–171, 2001.
[41]. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, vol. 21, no. 2, pp. 147–156, 1998.
[42]. D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett., vol. 18, no. 16, pp. 1738–1740, 2006.
[43]. E. Mohammed, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. Jour., vol. 8, no. 2, pp. 115–128, 2004.
[44]. H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 2, pp. 443–451, 2003.
[45]. Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol., vol. 21, no. 1, pp. 275–280, 2003.
[46]. B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol., vol. 22, no. 9, pp. 2128–2134, 2004.
[47]. J. Y. Chang, C. M. Wang, C. C. Lee, H. F. Shih, and M. L. Wu, “Realization of free-space optical pickup head with stacked si-based phase elements,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 214–216, 2005.
[48]. M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, “Surface-mountable silicon microlens for low-cost laser modules,” IEEE Photon. Technol. Lett., vol. 15, no. 7, pp. 945–947, 2003.
[49]. V. N. Mahajan, Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press, 1998), Ch. 3.
[50]. H. H. Sasaki, S. S. Takasaki, K. K. Kotani, and T. T. Takamori, “Compact bidirectional photonic circuit employing stacked multilayers of diffractive optical elements for fiber to the home applications,” in Proc. SPIE 4437, pp. 108–115, 2001.
[51]. S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Lightwave Technol., vol. 24, no. 2, pp. 927–934, 2006.
[52]. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 68–70, 2002.
[53]. J. Liu, J. Yu, S. Chen, and Z. Li, “Integrated folding 4 × 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1187–1189, 2005.
[54]. S. Ladenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett., vol. 28, no. 13, pp. 1150–1152, 2003.
[55]. R. U. Ahmad, F. Pizzuto, G. Camarda, R. L. Espinola, H. Rao, R. M. Osgood, Jr., “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 65–67, 2002.
[56]. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel and R. M. Osgood, Jr., “A study of high-index-contrast 90◦ waveguide bend structures,” Opt. Express, vol. 8, no. 9, pp. 517–528, 2001.
[57]. M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air Trenches for Sharp Silica Waveguide Bends,” IEEE J. Lightwave Technol., vol. 20, no. 9, pp. 1762–1772, 2002.
[58]. Y. Qian, J. Song, S. Kim, W. Hu, and G. P. Nordin, “Compact waveguide splitter networks,” Opt. Express, vol. 16, no. 7, pp. 4981–4990, 2008.
[59]. M. L. Wu, P. L. Fan, J. M. Hsu, and C. T. Lee, “Design of Ideal Structures for Lossless Bends in Optical Waveguides by Conformal Mapping,"IEEE J. Lightwave Technol., vol. 14, no. 11, pp. 2604–2614, 1996.
[60]. C. T. Lee and M. L. Wu, “Apexes-Linked Circle Gratings for Low-Loss Waveguide Bends,” IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 597–599, 2001.
[61]. M. L. Wu, H. C. Lan, C. M. Wang, and J. Y. Chang, “Design of Wide-Angle Low-Loss Waveguide Bends Using a Phase-Compensated Effective Microprism,” Jpn. J. Appl. Phys., vol. 46, no. 8B, pp. 5426–5430, 2007.
[62]. Y. Wang, Z. Lin, C. Zhang, F. Gao, and F. Zhang, “Integrated SOI Rib Waveguide Using Inductively Coupled Plasma Reactive Ion Etching,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 254–259, 2005.
[63]. S. Jung, J. Song, K. Kim, Y. Oh, “Waveguide Design and Fabrication of Trench for Hybrid Integrated Optic Devices,” in Proc. SPIE 5728, pp. 262–268, 2005.
[64]. Y. Inoue, T. Oguchi, Y. Hibino, S. Suzuki, M. Yanagisawa, K. Moriwaki and Y. Yamada, “Filter-em bedded wavelength-division multiplexer for hybrid-integrated transceiver based on silica-based PLC,” IEEE Electron. Lett., vol. 32, no. 9, pp. 847–848, 1996.
[65]. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides,” IEEE J. Lightw. Technol., vol. 19, no. 12, pp. 1938–1942, 2001.
[66]. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry–Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett., vol. 32, no. 5, pp. 533–535, 2007.
[67]. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A. vol. 14, no. 7, pp. 1617–1626, 1997.
[68]. Z. S. Liu, S. Tibuleac, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett., vol. 23, no. 19, pp. 1556–1558, 1998.
[69]. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant gratings filters: design and experimental demonstration,” Opt. Lett., vol. 23, no. 9, pp. 700–702, 1998.
[70]. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layer,” Opt. Lett., vol. 26, no. 9, pp. 584–586, 2001.
[71]. S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on Guided- mode resonance effects in thin-film multilayers,” IEEE Photon. Technol. Lett., vol. 9, no. 4, pp. 464–466, 1997.
[72]. A. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett., vol. 32, no. 15, pp. 2269–2271, 2007.
[73]. C. –L. Hsu, Y. –C. Liu, C. –M. Wang, M. –L. Wu, Y. –L. Tsai, Y. –H. Chou, C. –C. Lee, and J. –Y. Chang, Bulk Micromachined Optical Filter Based on Guided-Mode Resonance in Silicon Nitride Membrane,”IEEE J. Lightwave Techno., vol. 24, no. 4, pp. 1922–1928, 2006.
[74]. M. –L. Wu, C. –L. Hsu, Y. –C. Liu, C. –M. Wang, and J. –Y. Chang, Silicon-Based and Suspended Membrane Type of Guided-Mode Resonance Filters with the Spectrum-Modifying Layer Design,”Opt. Lett., vol. 31, no. 22, pp. 3333–3335, 2006.
[75]. Q. Wang, D. Zhang, H. He, Y. Hung, J. Chen, L. Chen, Y. Zhu, and S. Zhuang, “Compensation of reflectance response deviations of guided-mode resonant filters induced by overetching fabrication,” Opt. Lett., vol. 34, no. 1, pp. 70–72, 2009.
[76]. E. Popov, and B. Bozhkov, “Corrugated waveguide as resonance optical filters-advantages and limitations,” J. Opt. Soc. Am. A, vol. 18, no. 7, pp. 1758–1764, 2001.
[77]. J. Saarinen, E. Noponen, and J. Turunen, “Guide-mode resonance filters of finite aperture,” Opt. Eng., vol. 34, pp. 2560–2566, 1995.
[78]. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., vol. 22, no. 9, pp. 2043–2054, 2004.
[79]. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express, vol. 14, no. 15, pp. 6823–6836, 2006.
[80]. L. Schares et al., “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 5, pp. 1032–1044, 2006.
[81]. R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., vol. 26, no. 14, pp. 2136–2141, 2008.
[82]. D.V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, and J. S. Ahearn, “256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” IEEE J. Lightwave Technol., vol. 19, no. 8, pp. 1093–1103, 2001.
[83]. P. Lukowicz, J. Jahns, R. Barbieri, P. Benabes, T. Bierhoff, A. Gauthier, M. Jarczynski, G. A. Russell, J. Schrage, W. Sullau, J. F. Snowdon, M. Wirz, and G. Troster, “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 2, pp. 624–635, 2003.
[84]. F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, vol. 17, no. 13, pp. 10514–10521, 2009.
[85]. S. H. Hwang, J. Y. An, M. H. Kim, W. C. Choi, S. R. Cho, S. H. Lee, H. S. Cho, H. -H. Park, “VCSEL array module using (111) facet mirrors of a V-grooved silicon optical bench and angled fibers,” IEEE Photon. Technol. Lett. vol. 17, no. 2, pp. 477–479, 2005.
[86]. H. -C. Lan, H. -L. Hsiao, C. -C. Chang, C. -H. Hsu, C. -M. Wang, M. -L. Wu, “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, vol. 17, no. 23, pp. 20938–20944, 2009.
[87]. D. C. O’Shea, et al., Diffractive Optics: Design, Fabrication and Test (SPIE Tutorial Texts in Optical Engineering Vol. TT62).
[88]. J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. Ö. Ilday, F. X. Kärtner, and J. Yasaitis, “High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform,” Appl. Phys. Lett., vol. 87, no. 10, pp. 103501-1–103501-3, 2005.
[89]. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser, ” Opt. Express, vol. 14, no. 20, pp. 9203–9210, 2006.
[90]. I. O'Connor, et al., On-Chip Optical Interconnect for Low-Power (Springer Press, USA), 2004.
[91]. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express, vol. 12, no. 8, pp. 1622–1631, 2004.
[92]. P. Duran, “Blazar 40 Gbps Optical Active Cable,” Luxtera’s white paper from: www.luxtera.com, 2008.
[93]. J. Fujikata, et al., “LSI On-Chip Optical Interconnection with Si Nano-Photonics, ” IEICE Trans. Electron., vol. E91-C, no. 2, pp. 131–137, 2008.
指導教授 伍茂仁、張正陽
(Mount-Learn Wu、Jenq-Yang Chang)
審核日期 2009-12-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明