博碩士論文 93246005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.17.75.227
姓名 游智仁(Chih-Jen Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 共光程外差干涉式橢圓儀
(Common-path heterodyne interferometric ellipsometer)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 雙頻雷射共光程外差干涉橢圓儀
★ 超晶格結構之硬膜研究★ 交錯傾斜微結構薄膜在深紫外光區之研究
★ 膜堆光學導納量測儀★ 紅外光學薄膜之研究
★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測★ 成對表面電漿波生物感測器之研究及其在生醫上的應用
★ 影像式外差干涉術之建立★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 橢圓偏振術是量測待測樣本表面反射光或是穿透光之偏振態去分析該物質的光學特性。在各式橢圓儀的系統架設之中,干涉式橢圓儀是以振幅分光式干涉儀為基礎的量測系統,具有很高的橢偏參數量測精準度。然而,干涉式橢圓儀的實用性不若採用傳統偏振片―補償片―待測樣本―析光片架設的橢圓儀的原因有以下三點:
1. 振幅分光式干涉儀對相位的靈敏度相當高,因此干涉式橢圓儀必須維持系統的穩定性以降低外在環境的擾動所造成的影響。
2. 干涉式橢圓儀通常使用瓊斯矩陣來做理論分析而非穆勒矩陣,以致無法分析具有去偏振特性的待測樣本。
3. 在待測樣本尚未置至入之前,光學系統必須進行校正的步驟。
為了改進上述傳統干涉式橢圓儀的缺點,本論文提出由共光程外差干涉儀結合橢圓偏光術所構成的共光程干涉式橢圓儀系統架設。共光程外差干涉式橢圓儀所使用光源是能夠同時發射兩道正交,且帶有不同頻率之線偏振光的雙頻雷射。利用共光程組態可以大幅消除環境所引起的雜訊干擾,由於光程外差干涉式橢圓儀可適用於穆勒矩陣和史托克向量來做理論分析,適用於分析去偏振樣本。同時不需要額外的系統校正步驟,因此可以達到高精度橢圓參數即時量測之目的。
本論文共提出並架設三種的不同型態的共光程外差干涉式橢圓儀的量測系統:
1. 第一個系統架設是高速線性偏振調變橢圓儀。它是結合線性偏振旋轉器以及共光程外差干涉儀來量測橢偏參數。高速線性偏振調變橢圓儀具有精確且即時量測橢偏參數的能力;在量測矽基材上的二氧化矽薄膜厚度可以達到1 nm的精確度。
2. 第二個系統架設是雙頻成對偏振相移式橢圓儀,它結合了共光程外差干涉儀與相移干涉術,經由實驗結果可以證實雙頻成對偏振相移式橢圓儀同時具有精確量測橢偏參數以及完整的橢偏參數的動態範圍的能力。
3. 第三個系統架設是光學同調橢圓儀,它是由雙頻線性雷射光結合共光程外差干涉儀所組成。光學同調橢圓儀可以精準地量測去偏振樣本的橢偏參數。同時亦可以量測雷射光的偏振度以及同調度。
摘要(英) Ellipsometer belongs to a technique that is able to characterize the optical properties of a tested specimen by measuring the polarization state of light reflected from or transmitted through its surface. Among different kinds of the ellipsometers, interferometric ellipsometer (IE) is based on an amplitude division interferometer and is able to measure the ellipsometric parameters at high precision. However, IE is not popular than conventional ellipsometers which are based on polarizer-compensator-specimen-analyzer (PCSA) configuration because of the following reasons:
1. The amplitude-division interferometer is highly sensitive to phase noise. Then IE needs to be maintained at high stability in order to reduce the phase influence from surroundings.
2. The working principle is commonly described by use of Jones calculus rather than Mueller matrix so that IE can not be utilized to characterize a depolarizing specimen.
3. IE is required calibration prior to tested specimen being measured.
In order to overcome the disadvantages of the conventional IE, a common-path heterodyne interferometric ellipsometer (CHIE) by integrating the conventional ellipsometer with the common-path heterodyne interferometer is proposed and set up in this thesis. A dual-frequency laser which emits two orthogonally linearly polarized laser lights with slightly temporal frequency difference is served as a light source in CHIE. The background phase noise can be eliminated effectively by utilizing the common-path configuration. Since CHIE can be described by Mueller matrix, hence it can characterize a depolarizing specimen. The system calibration is not necessary in CHIE either, thus the ellipsometric parameters can be measured in real time with high accuracy.
In this thesis, three different system setups of CHIE are proposed:
1. The first system setup is a high-speed linear polarization modulation ellipsometer. It is based on a linear polarization rotator and is integrated with a common path heterodyne interferometer for ellipsometric parameter measurement. A real-time and accurate measurement of ellipsometric parameters, which demonstrated an accuracy of less than 1nm on thickness of SiO2 thin film deposited on silicon substrate, was verified experimentally.
2. The second system setup is a dual-frequency paired polarization phase shifting ellipsometer. It combines the features of the phase shifting interferometer and common-path heterodyne interferometer where the ellipsometric parameters of a specimen are measured accurately. The experimental results verify that dual-frequency paired polarization phase shifting ellipsometer is capable of determining the full dynamic range on ellipsometric parameters.
3. The third system setup is an optical coherent ellipsometer, in which a dual-frequency linearly polarized laser beam is integrated with a common-path heterodyne interferometer. Optical coherent ellipsometer is able to precisely measure the optical properties of a depolarizing specimen by measuring ellipsometric parameters. In the mean time, the degree of polarization and the degree of coherence of incident dual-frequency linearly polarized laser beam are measured too.
關鍵字(中) ★ 橢圓偏光術
★ 雙頻雷射
★ 橢偏參數
★ 外差干涉術
★ 橢圓儀
關鍵字(英) ★ ellipsometer
★ heterodyne interferometry
★ ellips
論文目次 中文摘要……………………………………………………i
英文摘要……………………………………………………iii
致謝…………………………………………………………vi
目錄…………………………………………………………vii
圖目錄………………………………………………………xi
表目錄………………………………………………………xiv
符號說明……………………………………………………xv
名詞縮寫……………………………………………………xviii
第一章 序論……………………………………………… 1
1.1 橢圓偏光術與橢偏參數………………………………1
1.2 PCSA橢圓儀的系統架設………………………………2
1.3 干涉式橢圓儀…………………………………………5
1.4 共光程外差干涉式橢圓儀……………………………9
參考文獻……………………………………………………11
第二章 橢圓偏光術與外差干涉術……………………… 15
2.1 史托克向量與穆勒矩陣…………………………… 15
2.1.1 史托克向量…………………………………………15
2.1.2 穆勒矩陣……………………………………………18
2.2 橢圓偏光術……………………………………………19
2.3 外差干涉術……………………………………………24
2.4 雙頻雷射光源…………………………………………25
2.4.1 電光調制器…………………………………………26
2.4.2 工作原理……………………………………………28
2.4.3 實驗架設……………………………………………31
2.5 實驗室座標、偏振方向與元件角度方位定義………32
參考文獻……………………………………………………34
第三章 高速線偏振調變橢圓儀………………………… 36
3.1 線偏振旋轉器…………………………………………36
3.2 電子訊號分離式線偏振調變橢圓儀…………………40
3.2.1 原理…………………………………………………40
3.2.2 電子訊號處理器……………………………………42
3.2.3 四分之一波片相位延遲偏差所造成的量測誤差
分析…………………………………………………45
3.2.4 SiO2薄膜厚度量測…………………………………47
3.3 直接訊號分離式線偏振調變橢圓儀…………………48
3.3.1 原理…………………………………………………49
3.3.2 雙頻圓偏振光的振幅不相等所造成的量測誤差
分析…………………………………………………51
3.3.3 四分之一波片相位延遲偏差所造成的量測
誤差分析……………………………………………56
3.3.4 SiO2薄膜厚度量測……………………………… 59
3.4 結論……………………………………………………60
參考文獻……………………………………………………62
第四章 雙頻成對偏振相移式橢圓儀…………………… 64
4.1 原理……………………………………………………65
4.1.1 巴比內.索雷依補償器……………………………65
4.1.2 雙頻成對線偏振雷射光束…………………………66
4.1.3 雙頻成對偏振相移式橢圓儀………………………67
4.2 誤差分析………………………………………………71
4.2.1 偏振片的角度設定偏差……………………………71
4.2.2 BSC的相位延遲偏差……………………………… 74
4.2.3 析光片的角度設定偏差……………………………75
4.2.4 總系統量測誤差之模擬結果………………………76
4.3 BSC的相位延遲校正………………………………… 78
4.4 SiO2薄膜折射率與厚度量測……………………… 80
4.5 結論……………………………………………………82
參考文獻……………………………………………………83
第五章 光學同調橢圓儀………………………………… 84
5.1 去偏振樣本的穆勒矩陣………………………………84
5.2 光學同調橢圓儀………………………………………85
5.3 光的同調度……………………………………………87
5.4 空氣/厚玻璃板介面之反射特性量測……………… 89
5.5 巴比內.索雷依補償器的相位延遲量測……………92
5.6 毛玻璃量測……………………………………………94
5.7 結論……………………………………………………96
參考文獻……………………………………………………98
第六章 結論……………………………………………… 99
6.1研究成果……………………………………………… 99
6.2未來研究方向………………………………………… 102
參考文獻……………………………………………………103
發表文章……………………………………………………106
參考文獻 1. C. H. Lin, C. Chou, and K. S. Chang, “Real time interferometric ellipsometry with optical heterodyne and phase lock-in techniques,” Appl. Opt. 29, 5159–5162 (1990).
2. N. A. Massie, R. D. Nelson, and S. Holly, “High-performance real-time heterodyne interferometry,” Appl. Opt. 18, 1797–1803 (1979).
3. C. Chou, H. M. Tsai, K. Y. Liao, L. D. Chou, P. H. Huang, “Optical activity measurement by use of a balanced detector optical heterodyne interferometer,” Appl. Opt. 45, 3733–3739 (2006).
4. Y. L. Lo, C. H. Lai, J. F. Lin, and P. F. Hsu, “Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne Interferometer,” Appl. Opt. 43, 2013–2022 (2004).
5. J. Y. Lee and D. C. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Opt. Commun. 256, 337–341 (2005).
6. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161–163 (1996).
7. J. Shamir, and Y. Fainman, “Rotating linearly polarized light source,” Appl. Opt. 21, 364–365 (1982).
8. J. H. Scofield, “A frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129–133 (1994).
9. S. M. F. Nee, C. J. Yu, J. S. Wu, H. S. Huang, C. E. Lin, and C. Chou, “Degrees of polarization and coherence of paired linear polarized laser beam by scattering glass plates measured using optical coherent ellipsometer,” Opt. Express 16, 4286–4295 (2008).
10. S. N. Jasperson, and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
11. S. N. Jasperson, D. K. Burge, and R. C. O’Handley, “A modulated ellipsometer for studying thin film optical properties and surface dynamics,” Surf. Sci. 37, 548–558 (1973).
12. K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
13. M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43, 827–832 (2004).
14. K. Vedam “Spectroscopic ellipsometry: a historical overview” Thin Solid Films 313-314, 1–9 (1998).
15. P. J. McMarr, K. Vedam, and J. Narayan, “Spectroscopic ellipsometry: A new tool for nondestructive depth profiling and characterization of interfaces,” J. Appl. Phys. 59, 694–701 (1986).
16. G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: Developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instrum. 67, 2930–2936 (1996).
17. Z. H. Wang and G. Jin “A label-free multisensing immunosensor based on imaging ellipsometry,” Anal. Chem. 75, 6119-6123 (2003).
18. G. Jin, P. Tengvall, I. Lundstr?m, and H. Arwin, “A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions,” Anal. Biochem. 232, 69–72 (1995).
指導教授 周晟、李正中
(Chien Chou、Cheng-Chung Lee)
審核日期 2009-10-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明