博碩士論文 93246015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.118.30.8
姓名 侯佳宏(Chia-Hung Hou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用奈微米球於提升氮化鎵發光二極體之光萃取效率研究
(Study of Improving the Light Extraction Efficiency of the GaN-based LEDs by using Microspheres or Nanospheres)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在提升氮化鎵發光二極體之光萃取效率。第二章探討二維柱狀結構於氮化鎵發光二極體表面與光萃取效率的關係。吾人利用三維有限時域插分法計算俱二維柱狀結構之氮化鎵發光二極體的光萃取效率。模擬結果顯示,隨著結構深度的加深,對應的光萃取效率也隨的提高。在實驗上,吾人鋪排直徑為1.5 ?m的單層聚苯乙烯小球於氮化鎵發光二極體的表面做為蝕刻遮罩,經過乾式蝕刻後,週期為1.5 ?m的氮化鎵柱便形成於元件的表面。製作出來的氮化鎵柱高度分別為80 nm、120 nm及180 nm的發光二極體。在直流電流為20 mA注入下,不同柱高元件所對應的光功率增益分別為12.0%、19.1%及30.7%。此實驗的結果與模擬得到的結果趨勢相同。製作二維週期性表面結構於LED元件表面的取光機制可由k空間的圖形來解釋。由於氮化鎵磊晶層的折射指數大於藍寶石基板與空氣,使得從量子井所發出來的光大部份都侷限於氮化鎵層。於是吾人利用小球製作柱狀結構於氮化鎵發光二極體表面,只要滿足此式,|kn//+G| 第三章探討製作二維空氣柱結構於氮化鎵發光二極體表面與光萃取效率的關係。吾人利用三維有限時域插分法計算俱二維柱狀與孔洞表面結構之氮化鎵發光二極體的光萃取效率。模擬結果顯示,隨著結構深度的加深,對應的光萃取效率也隨的提高。二維空氣洞的製作係透過微米球能聚焦的特性來完成。將微米鋪排於已塗佈光阻之氮化鎵發光二極體表面,經過曝光及顯影的步驟後,製作出二維空氣洞結構於光阻上,再透過乾蝕刻的方式將圖案轉移到發光二極體的表面。在此研究中,吾人製作了三種不同的空氣洞深度於元件上,深度分別為80 nm、120 nm及180 nm,其空氣洞的直徑皆為900 nm。在直流電流為20mA注入下,其光功率相較於未製作結構之元件的增益分別為9.5%、20.7%及35.7%。隨著結構深度的增加,元件的光功率亦跟著提升,此結果與模擬的趨勢相仿。由於製作表面結構會破壞到p-GaN,導致元件的操作電壓有些微的提升,此電壓的提升是由於部份的p-GaN在蝕刻製程時被破壞,造成透明導電層與p-GaN的接觸電阻增加所造成。
第四章旨於製作奈米級結構於藍寶石基板,並成長氮化鎵發光二極體磊晶層於此基板上,來達到提升光萃取效率的目的。在此研究中,吾人將直徑為750 nm的二氧化矽小球鋪排於鍍有100 nm二氧化矽薄膜的藍寶石基板上,先使用乾蝕刻方法將球與球交接處孔洞下的二氧化矽薄膜移除,再利用濕蝕刻的方法來蝕刻藍寶石基板。製作來的結構為二維的柱狀結構,週期為750 nm且高度200 nm。透過成長氮化鎵發光二極體磊晶層於此基板上並製作出的發光元件,其光功率相較於成長在平面藍寶石基板的元件增強了76%。從變溫發光光譜量測的結果,俱奈米結構於藍寶石基板之發光二極體其內部量子效率增強了19.6%。由此二數值可推得俱奈米結構於藍寶石基板之發光二極體的光萃取效率增強了47%。從三維有限時域插分法計算得到俱奈米結構於基板的發光二極體在光萃取效率上有40%的提升。此模擬結果與實驗的結果有些微的差距,吾人推測,這是因為模擬時沒有考慮到氮化鎵薄膜亦存在鋸齒狀結構於與藍寶石基板的交界面,此鋸齒狀結構將會增加光的散射機率,進而提升元件的光萃取效率。從實驗的結果可以得到,氮化鎵發光二極體光功率的增強係歸究於內部量子效率與光萃取效率的提升。
摘要(英) In this dissertation, we focused on improving the light extraction efficiency (LEE) of the GaN-based light-emitting diodes (LEDs). In Chapter 2, we explored the dependence of rod-texturing effect on LEE of the GaN LEDs. Three-dimensional finite-difference time-domain (3D FDTD) was employed to calculate the LEE of the rod-textured LEDs. The simulation results revealed that the LEE increased with increasing the height of the rods which were formed on the surface of the LEDs. An experiment was carried out to prove the simulation results. We deposited a monolayer of polystyrene (PS) microspheres of the diameter of 1.5 ?m onto the surface of LEDs and these spheres were used to serve as etching mask to resist the dry etching process. The periodic patterns were transferred onto the surface of GaN-based LEDs. We had fabricated 3 different depths, which were 80 nm, 120 nm and 180 nm, in order to check relations between etching depth and LEE enhancement. Under 20 mA dc current injection, the output power enhancements were 12.0%, 19.1% and 30.7%. The experimental results displayed the same trend as the simulation results. The physical origin of extracting the light by fabricating the 2D periodical structure can be explained by k-space diagram. Large portion of light emitted by the active layer are guided in the GaN layer because the refractive index of GaN, 2.4, is larger than those of air and sapphire, which are 1 and 1.76, respectively. Each guided mode is featured with its own wavevector, kn//. When periodical structure is formed onto the surface of GaN, the periodical structure provides a reciprocal lattice vector, G, which can couple the kn//. Once the condition, |kn//+G| In Chapter 3, we simulated, fabricated and characterized the GaN-based LEDs featuring with 2D air hole structure on the surfaces. The 3D FDTD was employed to calculate the LEE enhancement of the air hole-textured LEDs with different depths on the GaN surface. We found that the LEE enhancement increased with the increasing of the texturing depth of the structure. The hole structure was first formed on the photoresist via the focusing property of the microspheres and then transferred onto the surfaces of the GaN LEDs by dry etching process. In this study, we had fabricated 3 different etching depths, 80 nm, 120 nm and 180 nm, on the GaN surfaces, and the corresponding power enhancements for different etching depths were 9.5%, 20.7% and 35.7%. The experimental results follow the same trend as the 3D FDTD simulation predicted. The forward voltages of the hole-textured LEDs were slightly increased and were attributed to the damage of p-GaN layer during dry etching process.
In Chapter 4, we fabricated nano structure on the sapphire substrates and grew the GaN LED epitaxial structure on it in order to improve the light extraction efficiency. The nano structure is fabricated by using natural lithography technique. In this study, we deposited a monolayer of 750-nm-diameter SiO2 nanospheres onto the sapphire substrate which was coated SiO2 thin film with thickness of 100 nm. A dry-etching process was followed to remove the SiO2 thin film that was uncovered by the SiO2 spheres until the sapphire surface was exposed; then, the sample was wet-etched. 2D sapphire rods were finally formed on the sapphire substrate with period of 750 nm and height of 200 nm. The optical power of the nano-patterned sapphire substrate (NPSS) LED is improved by 76% compared with the LED on flat sapphire substrate (FSS). According to the temperature-dependent photoluminescence result, the internal quantum efficiency (IQE) is improved by 19.6%. Therefore, we can deduce that the LEE enhancement of the NPSS LED is 47%. We obtain 40% LEE enhancement from the 3D FDTD simulation results. The minor difference is attributed to the existence of voids in the GaN film at the sapphire/GaN interface which we do not take into concern in the simulation. These voids may enhance the scattering and further increase the LEE. According to the experimental results, we can conclude that the power improvement of NPSS LED is due to the improvement of both IQE and LEE.
關鍵字(中) ★ 奈米球
★ 微米球
★ 光萃取效率
★ 氮化鎵發光二極體
關鍵字(英) ★ nanospheres
★ microspheres
★ light extraction efficiency
★ GaN LEDs
論文目次 中文摘要 i
Abstract iii
Contents vi
List of Figure Captions vii
List of Tables xii
Chapter 1 Introduction 1
1.1 Overview of present techniques to improve LED’s efficiency 1
1.2 Summary and Motivation 15
1.3 Scope of Dissertation 17
Chapter 2 GaN-based LEDs with 2D rod arrays on the surface 18
2.1 Surface texturing technology via natural lithography 18
2.2 LEE calculation using 3D FDTD for rod-textured LEDs 23
2.3 Device fabrication and characterization 27
2.4 LEE enhancement due to textured n- and p-GaN 36
2.5 A qualitative explanation of the LEE improvement due to the textured structure 44
2.6 Summary 48
Chapter 3 GaN-based LEDs with 2D air hole arrays on the surface 50
3.1 Review of the methods to generate 2D air hole arrays by using spheres 50
3.2 The focusing field distribution of microspheres 55
3.3 Simulation on LEE of the hole-textured LEDs 61
3.4 Device fabrication and characterization 65
3.5 Summary 72
Chapter 4 GaN-based LEDs on nano-patterned sapphire substrates 73
4.1 Overview of PSS results 73
4.2 LEE calculation on NPSS LED 79
4.3 Experimental results and discussion 84
4.4 Summary 91
Chapter 5 Conclusions 92
References 94
參考文獻 [1] H. Morkoc, Nitride Semiconductors and devices. (Springer, Berlin, 1999).
[2] J. I. Pankove, E. A. Miller, and J. E. Berkeyheister, "Gallium blue light-emitting diodes," J. Lumin. 5, 84 (1972).
[3] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)," Jpn. J. Appl. Phys. 28, L2112 (1989).
[4] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Jpn. J. Appl. Phys. 31, L139 (1992).
[5] E. F. Schubert, Light Emitting Diodes, 1 ed. (Dambridge University Press, Cambridge, England, 2003).
[6] A. Zukauskasm, M. S. Shur, and R. Gaska, Introduction to solid-state light. (Wiely, New York, 2002).
[7] S.Nakamura and G. Fasol, The blue laser diode: GaN based light emitters and lasers. (Springer, Berlin, 1997).
[8] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-edge electroabsorption in the quantum well structure: The quantum-confined stark effect," Phys. Rev. Lett. 63, 2173 (1984).
[9] B. Aneeshkumar, Thesis "Independent control of valence- and conduction-band states in composite quantum wells", Technische Unitersitiet Eindhoven, Nov. 2004.
[10] S. H. Yen, Thesis "Numerical investigation of improvement in piezoelectric effect of violet InGaN laser diodes", National Chang-Hua University of Education, Jun. 2008.
[11] S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaars, T. Deguchi, T. Sota, and S. Nakamura, "Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth," Appl. Phys. Lett. 74, 1460 (1999).
[12] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, "Electrical characterization of GaN p-n junctions with and without threading dislocations," Appl. Phys. Lett. 73, 975 (1998).
[13] S. Nakamura, Senoh M, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, "InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate," Appl. Phys. Lett. 72, 211 (1998).
[14] J. Z. Domagala, Z. R. Zytkiewicz, B. Beaumount, J. Kozlowski, R. Czernetzki, P. Prystawko, and M. Leszczynski, "X-ray diffraction studies of expitaxial laterally overgrown (ELOG) GaN layers on sapphire substrates," J. Cryst. Growth 245, 37 (2002).
[15] X. A. Cao, S. F. LeBoeuf, M. P. D'Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, "Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates," Appl. Phys. Lett. 84, 4313 (2004).
[16] D. S. Wuu, H. W. Wu, S. T. Chen, T. Y. Tsai, X. Zheng, and R. H. Horng, "Defect reduction of laterally regrown GaN on GaN/patterned sapphire substrates," J. Cryst. Growth 311, 3063 (2009).
[17] J. Chen, J. F. Wang, H. Wang, J. J. Zhu, S. M. Zhang, D. G. Zhao, D. S. Jiang, H. Yang, U. Jahn, and K. H. Ploog, "Measurement of threading dislocation densities in GaN by wet chemical etching," Semicond. Sci. Technol. 21, 1229 (2006).
[18] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, "III-nitride photonic crystals," Appl. Phys. Lett. 83, 1231 (2003).
[19] J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, "Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes," Appl. Phys. Lett. 85, 142 (2004).
[20] F. S. Diana, A. David, I. Meinel, R. Sharma, C. Weisbuch, S. Nakamura, and P. M. Petroff, "Photonic crystal-assisted light extraction from a colloidal quantum dot/GaN hybrid structure," Nano Lett. 6, 1116 (2006).
[21] H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, "Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes," Opt. Express 14, 8654 (2006).
[22] S. H. Kim, K. D. Lee, J. Y. Kim, M. K. Kwon, and S. J. Park, "Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography," Nanotechnology 18, 055306 (2007).
[23] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, "Nitride-based light-emitting diodes with indium tin oxide electrode patterned by imprint lithography," Appl. Phys. Lett. 91, 013504 (2007).
[24] H. W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu, and S. C. Wang, "Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography," Nanotechnology 19, 185301 (2008).
[25] L. B. Chang, Y. H. Chang, and M. J. Jeng, "Light output improvement of InGaN-Based Light-Emitting diodes by microchannel structure," IEEE Photon. Technol. Lett. 19, 1175 (2007).
[26] C. H. Kuo, C. M. Chen, C. W. Kuo, C. J. Tun, C. J. Pan, B. J. Pong, and G. C. Chi, "Improvement of near-ultraviolet nitride-based light emitting diodes with mesh indium tin oxide contact layers," Appl. Phys. Lett. 89, 201104 (2006).
[27] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chii, "Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN," Appl. Phys. Lett. 90, 142115 (2007).
[28] F. I. Lai, S. C. Ling, C. E. Hsieh, T. H. Hsueh, H. C. Kuo, and T. C. Lu, "Extraction efficiency enhancement of GaN-based light-emitting diodes microhole array and roughened surface oxide," IEEE Electron Device Lett. 30, 496 (2009).
[29] U. W. Cheng, K. M. Pan, L. Y. Chen, M. Y. Ke, C. P. Chen, C. Y. Chen, C. C. Yang, and J. J. Huang, "Characterizations of GaN-based LEDs encompassed with self-aligned nanorod arrays of various distribution densities," IEEE Electron Device Lett. 30, 1060 (2009).
[30] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, "Improvement of External extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography," IEEE Electron Device Lett. 29, 658 (2009).
[31] M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, "Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays," IEEE Photon. Technol. Lett. 21, 257 (2009).
[32] M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, "Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays," IEEE J. Sel. Top. Quantum. Electon. 15, 1242 (2009).
[33] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, "GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography," Appl. Phys. Lett. 86, 221101 (2005).
[34] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, "Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography," Appl. Phys. Lett. 91, 171114 (2007).
[35] H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, "Nitride-based LEDs with nano-scale textured sidewalls using natural lithography," Nanotechnology 17, 2998 (2006).
[36] W. N. Ng, C. H. Leung, P. T. Lai, and H. W. Choi, "Photonic crystal light-emitting diodes fabricated by microsphere lithography," Nanotechnology 19, 255302 (2008).
[37] C. H. Chan, C. H. Hou, C. K. Huang, S. Z. Tseng, T. J. Chen, H. T. Chien, C. H. Kuo, K. H. Hsieh, Y. L. Tsai, K. C. Hsu, and C. C. Chen, "Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN LEDs," Jpn. J. Appl. Phys. 48, 020212 (2009).
[38] C. H. Hou, S. Z. Tseng, C. H. Chan, T. J. Chen, H. T. Chien, F. L. Hsiao, H. K. Chiu, C. C. Lee, Y. L. Tsai, and C. C. Chen, "Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres," Appl. Phys. Lett. 95, 133105 (2009).
[39] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographical generated two-dimensional photonic crystal patterns," Appl. Phys. Lett. 87, 203508 (2005).
[40] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Appl. Phys. Lett. 84, 855 (2004).
[41] C. F. Lin, C. M. Lin, K. T. Chen, W. C. Huang, M. S. Lin, J. J. Dai, R. H. Jiang, Y. C. Huang, and C. Y. Chang, "Blue light-emitting diodes with a roughened backside fabricated by wet etching," Appl. Phys. Lett. 95, 201102 (2009).
[42] S. C. Hsu, C. Y. Lee, J. M. Hwang, J. Y. Su, D. S. Wuu, and R. H. Hrong, "Enhanced light output in roghend GaN-based light-emitting diodes using electrodeless photoelectrochemical etching," IEEE Photon. Technol. Lett. 18, 2472 (2006).
[43] H. Kim, K. K. Choi, K. K. Kim, J. Cho, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong, "Light extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures," Opt. Lett. 33, 1273 (2008).
[44] C. W. Kuo, Y. C. Lee, Y. K. Fu, C. H. Tsai, M. L. Wu, G. C. Chi, C. H. Kuo, and C. J. Tun, "Optical simulation and fabrication of nitride-based LEDs with the inverted pyramid sidewalls," IEEE J. Sel. Top. Quantum. Electon. 15, 1 (2009).
[45] C. F. Lin, K. T. Chen, C. M. Lin, and C. C. Yang, "InGaN-based light-emitting diodes with nanoporous microhole structures," IEEE Electron Device Lett. 30, 1057 (2009).
[46] C. F. Lin, C. M. Lin, C. C. Yang, W. K. Wang, Y. C. Huang, J. A. Chen, and R. H. Horng, "InGaN-based light-emitting diodes with a cone-shaped sidewall structure fabricated through a crystallographic wet etching process," J. Electrochem. Soc. 12, H233 (2009).
[47] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, "High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD," IEEE Photon. Technol. Lett. 18, 1213 (2006).
[48] C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, "Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD," IEEE Electron Device Lett. 26, 464 (2005).
[49] A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. L. Hu, S. Nakamura, C. Weisbuch, and H. Benisty, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[50] C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, "Anisotropy of light extraction from GaN two-dimensional photonic crystals," Opt. Express 16, 7285 (2008).
[51] A. L. Fehrembach, S. Enoch, and A. Sentenac, "Highly directive light source using two-dimensional photonic crystal slabs," Appl. Phys. Lett. 79, 4280 (2001).
[52] Y. J. Lee, J. M. Hwang, T. C. Hsu, N. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, "Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates," IEEE Photon. Technol. Lett. 18, 1152 (2006).
[53] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, "Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates," Mat. Sci. Eng. B-Solid State Mater. Adv. Technol. 122, 184 (2005).
[54] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, "High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy," Phys. Stat. Sol. (a) 188, 121 (2001).
[55] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, "Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal pattern sapphire substrates in the micro- and nanoscale," J. Appl. Phys. 103, 014314 (2008).
[56] J. H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee, "Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire," IEEE Photon. Technol. Lett. 20, 1563 (2008).
[57] C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I. Hung, Y. H. Wang, and M. P. Houng, "Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure," Appl. Phys. Lett. 91, 121109 (2007).
[58] R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Hunag, S. H. Lin, C. F. Lin, and D. S. Wuu, "Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates," J. Cryst. Growth 298, 219 (2007).
[59] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, "Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates," J. Cryst. Growth 311, 2973 (2009).
[60] W. K. Wang, D. S. Wuu, S. H. Lin, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu, and A. Lin, "Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates," IEEE J. Quantum. Electorn. 41, 1403 (2005).
[61] C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, "Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate," Appl. Phys. Lett. 95, 011110 (2009).
[62] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kuo, "Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates," IEEE Photon. Technol. Lett. 20, 1193 (2008).
[63] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, "GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography," Jpn. J. Appl. Phys. 47, 6706 (2008).
[64] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, "Nanoscale epitaxial lateral overgrowth of GaN-based ligth-emitting diodes on a SiO2 nanorod-array patterned sapphire template," Appl. Phys. Lett. 93, 081108 (2008).
[65] R. Windish, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta, and G. Borghs, "Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes," Appl. Phys. Lett. 74, 2256 (1999).
[66] K. Piglmayer, R. Denk, and D. Bauerle, "Laser-induced surface patterning by means of microspheres," Appl. Phys. Lett. 80, 4693 (2002).
[67] M. H. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography," Appl. Phys. Lett. 78, 2273 (2001).
[68] W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[69] E. Matioli, M. Iza, Y. S. Choi, F. Wu, S. Keller, H. Masui, E. Hu, J. Speck, and C. Weisbuch, "GaN-based embedded 2D photonic crystal LEDs: Numerical optimixation and device characterization," Phys. Status Solidi 6, S675 (2009).
[70] S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, T. Hanada, M. W. Cho, T. Yao, S. K. Hong, H. Y. Lee, S. R. Cho, J. W. Choi, J. H. Choi, J. H. Jang, J. E. Shin, and J. S. Lee, "Origin of forward leakage current in GaN-based light-emitting devices," Appl. Phys. Lett. 89, 132117 (2006).
[71] X. A. Cao, J. A. Teetsov, F. Shahedipour-Sandvik, and S. D. Arthur, "Microstructural origin of leakage current in GaN/InGaN light-emitting diodes," J. Cryst. Growth 264, 172 (2004).
[72] Y. B. Hahn, R. J. Choi, J. H. Hong, H. J. Park, C. S. Choi, and H. J. Lee, "High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light-emitting diodes," J. Appl. Phys. 92, 1189 (2002).
[73] G. T. Chen, J. I. Chyi, C. H. Chan, C. H. Hou, C. C. Chen, and M. N. Chang, "Crack-free GaN grown on AlGaN/(111)Si micropillar arrat fabricated by polystyrene microsphere lithography," Appl. Phys. Lett. 91, 261910 (2007).
[74] C. H. Chan, C. C. Chen, C. K. Hunag, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang, and T. M. Hsu, "Self-assembly free-standing photonic crystals," Nanotechnology 16, 1440 (2005).
[75] M. K. Kown, J. Y. Kim, I. K. Park, K. S. Kim, G. Y. Jung, S. J. Park, J. W. Kim, and Y. C. Kim, "Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal," Appl. Phys. Lett. 92, 251110 (2008).
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2010-4-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明