博碩士論文 93322023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.147.46.183
姓名 邱薰頤(Hsun-I Chiu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 蒸汽養護對鹼-骨材反應之影響
(The Influence of Steam Curing on Alkali-Aggregate Reaction)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為探討蒸汽養護對鹼-骨材反應之影響,採集海岸山脈安山岩與花蓮和平溪骨材,利用蒸汽養護方式進行ASTM C227與ASTM C1293試驗。主要討論下列各項因素對鹼-骨材反應之影響:(1)鹼含量;(2)蒸汽養護;(3)端面束制;(4)前置期。
由試驗結果發現,海岸山脈安山岩與和平溪之骨材皆有鹼-骨材反應潛能,試體之總鹼含量越高則膨脹量越大。混凝土於蒸汽養護過程中將使膨脹量在早期即被激發,減緩晚期膨脹量之發生,使試體膨脹應變量小於未進行蒸汽養護之試體,且表面裂縫與反應膠體數量較少,由此可知蒸汽養護對減緩混凝土之鹼-骨材反應有一定之成效。若仿照一般預鑄廠之施作方式,將混凝土連同模具一併進行蒸汽養護,則端面束制之試體膨脹量明顯小於非端面束制之試體,而蒸汽養護之前置時間越長,則水化作用較完全,試體膨脹量亦較小,可降低混凝土構件因鹼-骨材反應所引致之膨脹量。
摘要(英) This study is mainly discussing how the steam curing affects on the Alkali-Aggregate Reaction. Andesite from the coastal range and aggregate of Heping River were used in the trial of ASTM C227and ASTM C1293 via the progress of steam curing. The four factors were discussed on the affects of the Alkali-Aggregate Reaction: (1)alkali content; (2)steam curing; (3)constrained end; (4)delay period.
The result of this study is that both of the andesite from the coastal range and the Aggregate of Heping River have the potential to represent the Alkali-Aggregate Reaction. IF the percentage of alkali content is higher, the scale of expansion would be larger. If the concrete made by either andesite from the coastal range or the Aggregate of Heping River were treated with steam curing, the expansion in the early stage would be stimulated rapidly, and the expansion of the latter stage would be suspended, allowing the overall scale of expansion to be smaller than the non-steam cured specimen. On the other hand, there would be less crack and reactive gel in the specimen treated with steam curing. So it is obvious to conclude that the steam curing can effectively reduce the Alkali-Aggregate Reaction in concrete. By imitating the methods of making concrete in the pre-casting factories, that is, allowing the concrete along with the patterns to be treated with steam curing, the scale of expansion of the constrained end in the specimen would be smaller than the scale of expansion of the non-constrained end. And if the delay period of the steam curing is longer, the scale of expansion of the specimen would be smaller. In that way, the scale of expansion in the concrete structure induced by the Alkali-Aggregate Reaction would be reduced.
關鍵字(中) ★ 鹼-骨材反應
★ 蒸汽養護
★ 前置期
★ 端面束制
關鍵字(英) ★ Delay Period
★ Constrained End
★ Steam Curing
★ Alkali-Aggregate Reaction
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XV
照片目錄 XVI
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究範圍及方法 3
1-4 論文架構 3
第二章 文獻回顧 6
2-1 鹼-骨材反應(Alkali-Aggregate Reaction;AAR) 6
2-2 鹼-骨材反應的分類 6
2-2-1 鹼-氧化矽反應(Alkali- Silica Reaction;ASR) 6
2-2-2 鹼-碳酸鹽反應(Alkali-Carbonate Reaction;ACR) 7
2-2-3 鹼-矽酸鹽反應(Alkali-Silicate Reaction) 8
2-3 鹼-骨材反應之機制 8
2-3-1 鹼-骨材反應機制 8
2-3-2 鹼-骨材反應的過程 11
2-4 鹼-骨材反應的特徵 13
2-4-1 外觀方面 13
2-4-2 內部方面 15
2-5 鹼-骨材反應造成之危害 17
2-6 悲極值(pessimum)之探討 17
2-6-1 悲極值(pessimum) 17
2-6-2 造成悲極值存在之因素 19
2-6-2-1 反應性骨材含量 19
2-6-2-2 反應性骨材粒徑 20
2-6-2-3 鹼量 20
2-6-2-4 卜作嵐材料之添加量 20
2-7 裂縫觀察與量測 21
2-7-1 人工描繪 21
2-7-2 顯微鏡 22
2-7-3 紫外線螢光樹脂輔以UV 光法 23
2-7-4 Underwood 合金輔以影像分析 24
2-7-5 超音波檢測法 26
2-8 抑制鹼-骨材反應的方法 27
2-9 加速養護方式 30
2-10 蒸汽養護各階段的條件限制 31
2-11 蒸汽養護特點 34
2-12 蒸汽養護對混凝土性質之影響 34
第三章 試驗計畫與方法 42
3-1 試驗規劃 42
3-2 試驗材料 44
3-3 試驗儀器與設備 47
3-3-1 試驗儀器 47
3-3-2 蒸汽養護設備 52
3-3-3 榮工處中壢預鑄廠之蒸汽養護設備 56
3-4 試驗方法與步驟 57
3-4-1 鹼-骨材反應潛能之水泥砂漿棒試驗
(ASTM C227 Mortar BarTest) 57
3-4-1-1 儀器與條件 57
3-4-1-2 試驗步驟 59
3-4-1-3 試驗配比 63
3-4-2 混凝土角柱膨脹試驗法
(ASTM C1293 Concrete Prism Test) 65
3-4-2-1 儀器與條件 65
3-4-2-2 試驗步驟 66
3-4-2-3 試驗配比 68
3-4-3 超音波檢測法 70
第四章 試驗結果與分析 71
4-1 鹼含量對試體膨脹量之影響 71
4-1-1 水泥砂漿棒膨脹試驗(ASTM C227) 71
4-1-2 混凝土角柱膨脹試驗(ASTM C1293) 72
4-1-3 鹼含量對超音波速之影響 73
4-1-4 綜合討論 74
4-2 蒸汽養護與標準環境對試體膨脹量之影響 81
4-2-1 養護條件 81
4-2-2 蒸汽養護與標準環境之試體膨脹量比較 84
4-2-3 蒸汽養護與標準環境之試體劣化行為 94
4-2-4 蒸汽養護與標準環境之試體超音波速比較 99
4-2-5 綜合討論 99
4-3 端面束制與非端面束制對試體膨脹量之影響 101
4-3-1 束制條件 101
4-3-2 端面束制與非端面束制之試體膨脹量比較 103
4-3-3 端面束制與非端面束制之試體超音波速比較 104
4-3-4 綜合討論 105
4-4 前置期對膨脹量之影響 111
4-4-1 前置期條件 111
4-4-2 前置期對試體膨脹量之影響 113
4-4-3 前置期對超音波速之影響 115
4-4-4 綜合討論 115
第五章 結論與建議 129
5-1 結論 129
5-2 建議 131
參考文獻 132
參考文獻 1. 王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,「台灣地區鹼-骨材反應特性之研究」,行政院國科會專題研究報告,NSC78-0410-E006-20,共98頁(1989)。
2. 田永銘、王淑慧、潘亮宇、陳維民,「混凝土鹼-骨材反應劣化與防治」,構造物破壞原因探討與處置研討會論文集,台北,第125-150頁(1999)。
3. 田永銘、楊世和、王淑慧,「台灣東部骨材鹼反應潛能研究」,中國土木水利工程學刊,第十三卷,第一期,第217~226頁(2001)。
4. 田永銘、楊世和、彭柏翰、王淑慧,「台灣的鹼-骨材反應問題與對策」,土木水利,第二十六卷,第一期,第78-94頁(1999)。
5. 林晏吉,「花東地區鹼-骨材反應之成因探討」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
6. 林志寶,「台灣骨材鹼反應潛能資料庫建置」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
7. 吳建憲,「水泥混凝土蒸汽養護成效對施工成本效益之研究以台灣高鐵C215標橋梁工法為例」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
8. 徐豐裕,「鹼-骨材反應引致之破裂行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
9. 張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
10. 張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
11. 莫詒隆、鄭勝仁、郭正一,「蒸汽養護最佳化分析」,結構工程,第十卷,第二期,第3~8頁(1995)。
12. 彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
13. 黃兆龍,混凝土品質保證,詹氏書局,台北,(1988)。
14. 楊世和,「台灣東部反應性骨材之探討及分析」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
15. 莊昆斌,「蒸氣養護對不同爐石添加量自充填混凝土熱學性質及工程性質之研究」,碩士論文,國立台灣科技大學營建工程系,台北(2004)。
16. 廖肇昌,混凝土配比:設計與控制,民全書局,台北,(1988)。
17. ACI Committee 517, “Accelerated Curing of Concrete at Atmospheric Pressure,” State-of-the-Art, (ACI 517.2R-80), ACI Manual of Concrete Practice, Part 5(1987).
18. ACI Committee 517, “Accelerated Curing of Concrete at Atmospheric Pressure-State of the Art,” ACI Journal, Proceedings, Vol. 77, No. 6, pp. 429-447(1980).
19. ACI Committee 517, “Low Pressure Steam Curing,” ACI Journal, Proceedings, Vol. 60, No. 8, pp. 953-986 (1963).
20. ACI Committee 517, “Recommended Practice for Atmospheric Pressure Steam Curing of Concrete,” ACI Journal, Proceedings, Vol. 66, No. 8, pp. 629-646 (1969).
21. ASTM C227-90, “Standard Test Method for Potential Alkali Reactivity
of Cement-Aggregate Combinations (Mortar Bar Method),” Annual Book of ASTM Standards, p.125-129 (1996).
22. ASTM C597-91, “Standard Test Method for Pulse Velocity through Concrete,” Annual Book of ASTM Standards, pp.286-288 (1996).
23. ASTM C1105-95, “Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction,” Annual Book of ASTM Standards, pp. 566-569 (1995).
24. ASTM C1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual Book of ASTM Standards, pp. 644-647 (1996).
25. ASTM C1293-95,“Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, pp.648-653 (1996).
26. Barbarulo, R., Peycelon, H., Prené, S., and Marchand J., “Delayed ettringite Formation Symptoms on Mortars Induced by High Temperature Due to Cement Heat of Hydration or Late Thermal Cycle,” Cement and Concrete Research, Vol. 35, No. 1, pp.125-131 (2005).
27. Carles-Gibergues, A., and Cyr, M., “Interpretation of Expansion Curves of Concrete Subjected to Accelerated Alkali-Aggregate Reaction (AAR) Test,” Cement and Concrete Research, Vol. 32, pp. 691-700 (2002)
28. Clark, L.A., and Ng, N.E., “The Effect of Alkali-Silica Reaction on Punching Shear Strength of Reinforced Concrete Slabs,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.659-664 (1989).
29. Chengzhi, Z., Aiqin, W., Mingshu T., and Ningsheng Z., “Influence of Dimension of Test Specimen on Alkali-Aggregate Reaction Expansion,” ACI Material Journal, Vol. 96, No. 2, pp. 204-207 (1997).
30. Cyr, M., and Carles-Gibergues, A., “Normalized Age Applied to AAR Occurring in Concretes with or without Mineral Admixtures,” Cement and Concrete Research, Vol. 32, pp. 1771-1782 (2002).
31. Diamond, Sidney, and Ong, Shaode, “Measurement of Immediate ASR Expansion of Steam Cured Mortar Bars,” Cement and Concrete Research, Vol. 24, No. 7, pp. 1305-1310 (1994).
32. Erdem, T.K., “Setting Time-An Important Criterion to Determine the Length of the Delay Period before Steam Curing of Concrete,” Cement and Concrete Research, Vol. 33, No. 5, pp. 741-745 (2003).
33. Fan, S., and Hanson, J.M., “Length Expansion and Cracking of Plain and Reinforced-Concrete Prisms Due to Alkali-Silica Reaction,” ACI Structural Journal, Vol. 95, No. 4, pp. 480-487 (1998).
34. Fan, S., and Hanson, J. M., “Effect of ASR Expansion and Cracking on structural Behavior of Reinforced Concrete Beams,” ACI Structural Journal, Vol. 95, No. 5, pp. 498-505 (1998).
35. Gillott, J.E., “Alkali-aggregate reactions in concrete,” Engineering Geology, Vol. 9, No. 4, pp. 303-326 (1975).
36. Gross, M.R., “Strain accommodated by Brittle Failure in Adjacent units of the Monterey Formation, U.S.A.: Scale Effects and Evidence for Uniform Displacement Boundary Condition,” Journal of Structural Geology, Vol. 17, No. 9, pp. 1303-1318 (1995).
37. Hadley, D.W., “Alkali Reactivity of Carbonate Rocks-Expansion and Dedolomitization,” Proceeding Highway Research Board, Vol. 40, pp. 462-474 (1961).
38. Hanson, J.A., “Optimum Steam Curing Procedure in Pre-casting Plants,” ACI Journal, Proceedings, Vol. 60, No. 1, pp. 75-100 (1963).
39. Higginson, E.C., “Effect of Steam Curing on the Important Properties of Concrete,” ACI Journal, Proceedings, Vol. 58, No. 3, pp. 281-298 (1961).
40. Hobbs, D.W., Alkali-Silica Reaction in Concrete, Thomas Telford, London, (1988).
41. Ho, D.W.S., Chua, C.W., and Tam, C.T., “Steam-Cured Concrete Incorporating Mineral Admixtures,” Cement and Concrete Research, Vol. 33, No. 4, pp.595-601 (2003).
42. Jones, A.E.K., and Clark L.A., “The Practicalities and Theory of Using Crack Width Summation to Estimate ASR Expansion.” Proceedings of the Institution of Civil Engineers, Structures and Buildings, Vol. 104, No. 2, pp. 183-192 (1994).
43. Jones, A.E.K., and Clark L.A., “Structural Effect of Alkali-Silica Reaction.” Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Melbourne, Australia, pp.394-401 (1996).
44. Klieger, Paul, “Effect of Mixing and Curing Temperature on Concrete Strength,” ACI Journal, Proceedings, Vol. 54, No.12, pp. 1063-1081 (1958).
45. Kobayashi, K., Shiraki, R., and Kawai, K., “Influence of Alkali Concentration and Distribution Occurring in Concrete Members on Expansion Due to Alkali-Silica Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.641-646 (1989).
46. Kozlova, S., Millrath, K., Meyer, C., and Shimanovich, S., “A suggested Screening Test for ASR in Cement-Bound Composites Containing Glass Aggregate Based on Autoclaving,” Cement and Concrete Composites, Vol. 26, No. 7, pp. 827-835 (2004).
47. Ludmila, D.M., Handbook of Concrete Aggregates : Noyes Publications, Park Ridge, New Jersey, USA (1983).
48. Marrett, R., and Allmendinger, R.W., “Amount of Extension on “Small” Faults : An Example from the Viking graben,” Geology, Vol. 20, pp. 47-50 (1992).
49. Marzouk, H., and Langdon, S., “The Effect of Alkali-Aggregate Reactivity on the Mechanical Properties of High and Normal Strength Concrete,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 549-556 (2003).
50. Mohammed, T.U., Hamada, H., and Yamaji, T., “Alkali-Silica Reaction-Induced Strains over Concrete Surface and Steel Bars in Concrete,” ACI Materials Journal, Vol. 100, No. 2, pp. 133-142 (2003).
51. Mo, X., Yu, C., and Xu, Z., “Long-Term Effectiveness and Mechanism of LiOH in Inhibiting Alkali-Silica Reaction,” Cement and Concrete Research, Vol. 33, pp. 115-119 (2003).
52. Nasser, K.W., and Lohtia, R.P., “Mass Concrete Properties at High Temperatures,” ACI Journal, Proceedings, Vol. 68, No. 3, pp. 180-186 (1971).
53. Nishibayashi, S., Yamura, K., and Sakata, K., “Evaluation of Cracking of Concrete Due to Alkali-Aggregate Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.759-764 (1989).
54. Nemati, K.M., “Preserving Microstructure of Concrete under Load Using the Wood's Metal Technique,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, No. 1, pp. 133-142 (2000).
55. Rivard, P., Fournier, B., and Ballivy, G., “Quantitative Petrographic Technique for Concrete Damage Due to ASR: Experimental and Application,” Cement Concrete and Aggregates, Vol. 22, No.1, pp. 63-72 (2000).
56. Rivard, P., Fournier, B., and Ballivy, G., “The Damage Rating Index Method for ASR Affected Concrete-A Critical Review of Petrographic Features of Deterioration and Evaluation Criteria,” Cement Concrete and Aggregates, Vol. 24, No. 2, pp. 81-91 (2002).
57. Shayan, A., Diggins, R., and Ivanusec, I., “Effectivness of Fly Ash in Preventing Deleterious Expansion Due to Alkali-Aggregate Reaction in Normal and Steam-Cured Concrete,” Cement and Concrete Research, Vol. 26, No. 1, pp. 153-164 (1996).
58. Shayan, A., and Ivanusec, I., “Experimental Clarification of the Association of Delayed Ettringite Formation with Alkali-Aggregate Reaction,” Cement and Concrete Research, Vol. 18, No. 3, pp. 161-170 (1996).
59. Shayan, A., “Prediction of Alkali Reactive Potential of Some Australian Aggregate and Correlation with Service Performance,” ACI Material Journal, Vol. 89, pp. 13-23 (1992).
60. Shayan, A., “The ‘Pessimum’ Effect in an Accelerated Motar Bar Test Using 1 M NaOH Solution at 80℃,” Cement and Concrete Composites, Vol. 14, pp. 249-255 (1992).
61. Shideler, J.J., “Early Strength of Concrete as Affected by Steam Curing Temperatures,” ACI Journal, Proceedings, Vol. 46, No. 4, pp. 273-283 (1949).
62. Shon, C.S., Sarker, S.L., and Zollinger, D.G., “Application of Modified ASTM C1260 Test for Fly Ash-Cement Mixtures,” Transportation Research Record, No. 1834, Paper No. 03-2338, pp. 93-106 (2003).
63. Sturrup, V.R., Vecchion, F.J., and Caration, H., “Pulse Velocity as a Measure of Concrete Comprehensive Strength,” American Concrete Institute SP-82, pp. 201-227 (1984).
64. Swamy, R.N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York, (1992).
65. Turkel, Selcuk, “The Effect of Excessive Steam Curing on Portland Composite Cement Concrete,” Cement and Concrete Research, Vol. 35, No. 2, pp. 405-411 (2005).
66. Xu, G.J.Z., Watt, D.F., and Hudec, P.P., “Effectiveness of Mineral Admixtures in Reducing ASR Expansion,” Cement and Concrete Research, Vol. 25, No. 6, pp. 1225-1236 (1995).
67. Zhang, C.Z., Wang, A., Tang, M.S., and Zhang, N.S., “Influence of Dimension of Test Specimen on Alkali-Aggregate Reactive Expansion,” ACI Materials Journal, Vol. 96, No. 2, pp. 204-207 (1999).
68. Zinin, P., Manghnani, M.H., Wang, Y.C., and Livingston, R.A., “Detection of Cracks in Concrete Composites Using Acoustic Microscopy,” NDT and E International, Vol. 31, No. 1, pp. 283-287 (2000).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明