博碩士論文 93322045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.207.254.88
姓名 吳清哲(Ching-Je Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式評估
(The estimate of the degradation model of sulfate attacked barrier at low-level radioactive wastes field.)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低放射性廢棄物處置場主體由混凝土構成,台灣在四面環海情形下,低放射性廢棄物處置場可能遭受外在環境各種元素的侵蝕,而低放射廢棄物所含核種需經300年後,絕大部分才會自然消失,處置場障壁長期在此種服務環境下,可能對混凝土造成損害或劣化甚至影響其耐久性。
本研究針對低放射性廢棄物處置場所使用之混凝土材料,以實驗室模擬混凝土材料長期受硫酸鹽侵蝕下,探討混凝土材料長期在此環境下的行為,分析其可能劣化機制及對耐久性之影響。試驗結果得知(1)以卜作嵐材料取代部份水泥,能改善混凝土抗硫酸鹽侵蝕之能力;(2)受硫酸鹽侵蝕後,其侵蝕之深度及濃度皆隨著歷時時間增加,以卜作嵐材料取代部分水泥,能增加混凝土緻密性提升抗硫酸鹽侵蝕之能力;(3)混凝土在長期硫酸鹽侵蝕條件下,動彈性模數值隨著歷時時間而增加;(4)由微觀分析結果顯示,水泥漿體受硫酸鹽侵蝕之歷時下,其內部微結構明顯可發現侵蝕產物,造成試體剝落及開裂,而使用卜作嵐材料能明顯消耗水泥漿體中的氫氧化鈣含量,使得混凝土更加緻密。
此外,採用硫酸鹽侵蝕模型針對混凝土受硫酸鹽侵襲進行參數敏感度分析,結果顯示以擴散係數、C3A含量、硫酸鹽邊界濃度及水泥水化程度對硫酸鹽侵蝕影響程度最大。
摘要(英) The proposed low-level radioactive wastes disposal calls for the use of concrete. Since Taiwan is surrounded by the sea, the low-level radioactive wastes disposal site is very likely to suffer from the attack of different elements of the environment, specifically, sulfate attack. The attack of concrete material used at the low-level radioactive wastes disposal site by the sulfate was simulated in the laboratory to determine the long-term durability of concrete material. The possible degradation mechanism and potential influence on the durability were carefully examined in this study.
The results of the laboratory works shows that: (1)the replacement of a portion of Portland cement with pozzolanic materials was found to help the concrete to resist the sulfate attack; (2)after being attacked by the sulfate, the depth of sulfate penetration increases with elapsed time of sulfate attack; (3)the dynamic modulus of concrete under the attack of sulfate increased as the time elapsed; (4)shown by microstructural observations, the product of sulfate attack to concrete was found in the specimens obtained from the peel-off and cracked portion, and the consumption of calcium hydroxide in the body of concrete by pozzolanic materials makes the concrete more resistant to sulfate attack.
In addition, a parametric study on the development of sulfate attack was carried out using a computer program. The result shows that the diffusion coefficient of concrete, C3A content of cement, sulfate boundary concentration, and the degree of hydration of cement were found to have greater effects on concrete by sulfate attack.
關鍵字(中) ★ 低放射性廢棄物處置場
★ 混凝土障壁
★ 硫酸鹽侵蝕
關鍵字(英) ★ low-level radioactive wastes
★ concrete barrier
論文目次 第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1 低放射性廢棄物 4
2.1.1 低放射性廢棄物來源 4
2.1.2 我國低放射性廢棄物貯存設施計畫之需求性 4
2.1.3 低放射性廢棄物處置 5
2.1.4 低放射性廢棄物處置場之環境侵蝕 9
2.2 酸鹽侵蝕 10
2.2.1 硫酸鹽侵蝕機理 10
2.2.2 硫酸鎂的侵蝕 14
2.2.3 影響硫酸鹽侵蝕的因素 15
2.3 碳硫矽鈣石型硫酸鹽侵蝕 23
2.3.1 碳硫矽鈣石結構特徵 23
2.3.2 碳硫矽鈣石產生因素 24
2.4 硫酸鹽侵蝕模型 28
第三章 敏感度分析 30
3.1 硫酸鹽侵蝕模概述 30
3.1.1 化學反應 34
3.1.2 開裂對試體擴散係數的影響 35
3.1.3 膨脹模型 37
3.2 參數分析 38
3.2.1 水泥用量 39
3.2.2 水泥比重 42
3.2.3 水泥水化程度 45
3.2.4 C3A含量 48
3.2.5 石膏含量 51
3.2.6 擴散係數 52
3.2.7 硫酸鹽邊界濃度 61
3.2.8 可填充毛細管孔隙 64
3.3 參數分析之評估 67
第四章 實驗計畫 70
4.1 實驗材料 70
4.2 主要實驗設備 76
4.3 實驗內容及方法 80
4.3.1 實驗流程 80
4.3.2 實驗變數 82
4.3.3 實驗方法 85
第五章 結果與討論 89
5.1 硫酸鹽侵蝕試驗 89
5.2 硫酸鹽入侵濃度剖面 92
5.2.1 環境濃度對不同配比之混凝土濃度剖面 92
5.2.2 不同混凝土配比在歷時環境下之濃度剖面 98
5.2.3 濃度剖面推求擴散係數 102
5.2.4 不同配比之砂漿棒濃度剖面 105
5.2.5 不同水泥砂漿棒配比在歷時環境下之濃度剖面 110
5.3 動彈性模數試驗 113
5.3.1 不同配比之混凝土動彈性模數 113
5.3.2 不同混凝土配比在相同環境條件下之動彈性模數變化 118
5.4 微觀分析 121
5.4.1 X光繞射分析 121
5.4.2 電子顯微鏡觀測 125
5.5 混凝土配比受硫酸鹽侵蝕之評估 134
第六章 結論與建議 137
參考文獻 141
參考文獻 行政院原子委員會放射性物料管理局,http://fcma.aec.gov.tw (2005)。
李明君,李釗,1999,「使用飛灰等摻料製作高強度混凝土之探討」,應用礦物摻料提昇混凝土品質,台灣營建研究院。
梁正儀,1990,「高強度水泥砂漿受硫酸鹽侵蝕問題之研究」,碩士論文,國立成功學土木工程研究所,台南。
陳永增、鄧惠源,1999,「非破壞檢測」,全華科技圖書股份有限公司。
陳伯忠,2005,「用過核子燃料乾式貯存設施之混凝土材料耐久性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳彥任,1993,「爐石取代水泥及添加石膏對抗硫酸鹽侵蝕能力影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳勇智,2004,「基本頻率試驗法及超音波量測混凝土動態彈性模數之比較」,碩士論文,國立屏東科技大學土木工程研究所,屏東。
黃兆龍,1999,「混凝土性質及行為」,詹氏書局。
黃兆龍,2003,「高性能混凝土理論與實務」,詹氏書局。
潘致遠,1999,「添加矽灰及爐石對水泥薄漿工程性質之影響研研」,碩士論文,國立中央大學土木工程研究所,中壢。
歐俊顯,2001,「硫酸鹽溶液加速評估混凝土耐久性」,碩士論文,國立成功大學土木工程研究所,台南。
蘇南,1999,「高爐石粉對混凝土耐久性之影響」,應用礦物摻料提昇混凝土品質,台灣營建研究院,。
Aköz, F., Türker, F., Koral, S., and Yüzer, N. (1999), “Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume.” Cement and Concrete Research, Vol. 29, pp. 537-544
Aguilera, J., Martínez-Ramírez, S., Pajares-Colomo, I., Blanco-Varela, M. T., (2003), “Formation of thaumasite in carbonated mortars.” Cement and Concrete Composites, Vol. 25, pp. 991-996.
A1-Dulaijan, S. U., Maslehuddin, M., A1-Zahrani, M. M., Sharif, A. M., Shameem, M., and Ibrahim, M. (2003), “Sulfate resistance of plain and blended cements exposed varving concentrations of sodium sulfate.” Cement and Concrete Composites, Vol. 25, pp. 429-437.
Al-Amoudi, O. B. (2002), “Attack on plain and blended cements exposed to aggressive sulfate environments.” Cement and Concrete Composites, Vol. 24, pp. 305-316.
Barnett, S. J., Halliwell, M. A., Crammond, N. J., Adam, C. D., and Jackson, A. R.W. (2002), “Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting.” Cement and Concrete Composites, Vol. 24, pp. 339-346.
Boyda, A. J., Mindess, S. (2003), ”The use of tension testing to investigate the effect of W/C ratio and cement type on the resistance of concrete to sulfate attack.” Cement and Concrete Research, Vol. 34, pp. 373-377.
Brown, P., Hooton, R. D. (2002), ” Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements,” Cement and Concrete Composites, Vol. 24, pp. 361-370.
Cao, H. T., Bucea, L., Ray, A., Yozghatlian, S. (1997), “The effect of cement combosition and PH of environm ent on sulfate resistance of Portland cements and blended cements.” Cement and Concrete Composites, Vol. 19, pp. 161-171.
Collett, G., Crammond, N. J., Swamy, R. N., and Sharp, J. H. (2004), “The role of carbon dioxide in the formation of thaumasite.” Cement and Concrete Research, Vol. 34, No.9, pp. 1599-1612.
Chatterji, S. (1995), “On the applicability of Fick's second law to chloride ion migration through Portland cement concrete.” Cement and Concrete Research, Vol. 25, No. 2, pp. 299-303.
Crammond, N. (2002), “The occurrence of thaumasite in modern construction - a review.” Cement and Concrete Composites, Vol. 24, pp. 393-402.
Diamond, S. (1996), “Delayed ettringite formation - processes and problems,” Cement and Concrete Composites, Vol. 18, No. 3, pp. 205-215.
Diamond, S. (2003), “Thaumasite in Orange County, Southern California: an inquiry into the effect of low temperature.” Cement and Concrete Composites, Vol. 25, pp. 1161-1164.
Djuric, M., Ranogajec, J., Omorjan, R., and Miletic, S. (1996), “Sulfate corrosion of Portland cement pure and blended with 30% of fly ash.” Cement and Concrete Research, Vol. 26, No. 9, pp. 1295-1300.
Hartshorn, S. A., Sharp, J. H., and Swamy, R. N. (2002), “The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution.” Cement and Concrete Composites, Vol. 24, pp. 351-359.
Higgins, D. D., Crammond, N. J. (2003), “Resistance of concrete containing ggbs to the thaumasite form of sulfate attack.” Cement and Concrete Composites, Vol. 25, pp. 921-929.
Hoglund, L. O. (1992), “Some notes on ettringite formation in cementitious materials - influence of hydration and thermodynamic constraints for durability.” Cement and Concrete Research, Vol. 22, No. 2-3, pp. 217-228.
Irassar, E. F., Maio, A. D., and Batic, O. R. (1996), “Sulfate attack on concrete with mineral admixtures.” Cement and Concrete Research, Vol. 26, No. 1, pp. 113-123.
Lee, S. T., Moon, H. Y., and Swamy, R. N. (2005), “Sulfate attack and role of silica fume in resisting strength loss.” Cement and Concrete Composites, Vol. 27, pp. 65-76.
Malhotra, V. M., Carino, N. J. (2004), Handbook on nondestructive testing of concrete, CRC Press LLC , U.S.A.
Mbessa, M., Pe´ra, J. (2001), “Durability of high-strength concrete in ammonium sulfate solution.” Cement and Concrete Research, Vol. 31, pp. 1227-1231.
Mehta, P. K. (1986), Concrete Structure Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Mironovaa, M. K., Gospodinovb, P. N., and Kazandjievb, R. F. (2001), ”The effect of liquid push out of the material capillaries under sulfate ion diffusion in cement composites.” Cement and Concrete Research, Vol. 32 , pp. 9-15.
Monteiroa, P. J. M., Kurtis, K. E. (2003), ”Time to failure for concrete exposed to severe sulfate attack.” Cement and Concrete Research, Vol. 33, pp. 1159-1163.
Mulenga, D. M., Stark, J., and Nobst, P. (2003), “Thaumasite formation in concrete and mortars containing fly ash.” Cement and Concrete Composites, Vol. 25, No. 8, pp. 907-912.
Nehdi, M., Hayek, M. (2005), ”Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity.” Cement and Concrete Research, Vol. 35 , pp. 731-742.
Romer, M. (2003), “Steam locomotive soot and the formation of thaumasite in shotcrete,” Cement and Concrete Composites, Vol. 25, pp. 1173-1176.
Sahu, S., Badger, S., Thaulow, N., (2003), “Mechanism of thaumasite formation in concrete slabs on grade in Southern California.” Cement and Concrete Composites, Vol. 25, pp. 889-897.
Santhanama, M., Cohenb, M. D., Olekb, J. (2003), ”Effects of gypsum formation on the performance of cement mortars during external sulfate attack.” Cement and Concrete Research, Vol. 33, pp. 325-332.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars.” Cement and Concrete Research, Vol. 32, pp. 585-592.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Proposed mechanisms.” Cement and Concrete Composites, Vol. 32, pp. 915-921.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms.” Cement and Concrete Composites, Vol. 33, pp. 341-346.
Sims, I., Huntley, S. A. (2004), “The thaumasite form of sulfate attack-breaking the rules.” Cement and Concrete Composites, Vol. 26, pp. 837-844.
Smallwood, I., Wild, S., and Morgan, E. (2003), ” The resistance of metakaolin (MK)-Portland cement (PC) concrete to the thaumasite-type of sulfate attack (TSA)-Programme of research and preliminary results.” Cement and Concrete Composites, Vol. 25, pp. 931-938.
Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J. H., and Swamy, R. N. (2003), “Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar.” Cement and Concrete Composites, Vol. 25, pp. 969-976.
Tixier, R. (2000), ‘‘Microstructural development and sulfate attack modeling in blended cement-based materials.’’ PhD dissertation, Arizona State University, Tempe, Ariz.
Tixier, R., Mobasher, B. (2003), ”Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation.” ASCE Journal of Materials Engineering, Vol. 15, No. 4, pp. 305-313.
Tixier, R., Mobasher, B. (2003), ”Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. II: Comparison with Experiments.” ASCE Journal of Materials Engineering, Vol. 15, No. 4, pp. 314-322.
Torres, S. M., Sharp, J. H., Swamy, R. N., Lynsdale, C. J., and Huntley, S. A. (2003), “Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack,” Cement and Concrete Composites, Vol. 25, pp. 947-954.
Torii, K., Taniguchi, K., and Kawamura, M. (1995), “Sulfate resistance of high ash content concrete.” Cement and Concrete Research, Vol. 25 , pp. 759-768.
Tumidajski, P. J., Chan, G. W., and Philipose, K. E. (1995), “An effective diffusivity for sulfate transport into concrete.” Cement and Concrete Research, Vol. 25, No. 6, pp. 1159-1163.
Tumidajski, P. J., Chan, G. W., and Philipose, K. E. (1995), ”An effective diffusivity for sulfate transport into concrete.” Cement and Concrete Research, Vol. 25,No. 6, pp. 987-993.
Tumidajski, P. J., Turc, I. (1995), ”A rapid test for sulfate ingress into concrete.” Cement and Concrete Research, Vol. 25, No. 5, pp. 924-928.
Young, J. F., Mindess, S., and Darwin, D. (2002), Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
指導教授 黃偉慶(Huang Wei-Hsing) 審核日期 2006-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明