博碩士論文 93323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:3.147.65.65
姓名 許傅凱(Fu-Kai Shu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 機械合金法合成含鋁之Mg2Ni儲氫合金的結構與特性研究
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在於探討製程方式與添加鋁粉對IECP法所製備的Mg2Ni合金之結構、表面型態與吸放氫特性的影響。分別將Mg2Ni與Mg2Ni 混合鋁粉配製為
(Mg2Ni)0.9Al0.1粉體,藉由機械合金法球磨後,以X光繞射分析(XRD)、掃描式電子顯微鏡(SEM)、微分掃描熱分析儀(DSC)觀察結構、表面型態與熱行為之變化,並進行吸放氫測試(PCI),以暸解Mg2Ni與(Mg2Ni)0.9Al0.1粉體於球磨15小時後的粉體結構與表面型態,對於吸放氫的影響。
結果顯示Mg2Ni與(Mg2Ni)0.9Al0.1粉體經機械合金法球磨,隨著球磨時間增加,晶粒尺寸逐漸細化導致繞射峰有寬化與強度弱化的現象,當球磨至15小時,Mg2Ni與(Mg2Ni)0.9Al0.1粉體的內部結構已趨於非晶質化,此時(Mg2Ni)0.9Al0.1粉體有合金化現象,產生另ㄧ繞射峰Al3Ni。球磨15小時後,由於粉體表面積增加致使表面張力隨之增加,而有抗機械力粉碎效果產生團聚現象。IECP法所製備的Mg2Ni經球磨15小時後,於溫度300℃與壓力40atm條件下,活化1小時吸氫量即可達3.0wt.%。球磨15小時的(Mg2Ni)0.9Al0.1粉體,於溫度200℃吸放氫曲線中可觀察放氫平台壓,其壓力與放氫量分別為0.16atm與0.6wt.%。
摘要(英) This research purpose lies in the influence of manufacturing process and aluminum addition on the structure, appearance and hydriding characteristic of Mg2Ni prepared by IECP. The structure, appearance and hydriding characteristic of Mg2Ni and (Mg2Ni)0.9Al0.1 by the ball milling for 15 hours have been examined by X-ray diffraction(XRD), scanning electron microscopy(SEM), differential scanning calorimetric(DSC) and pressure concentration isothermal(PCI).
With the milling time boost, grain refinement of Mg2Ni and (Mg2Ni)0.9Al0.1 results in the phenomenon of broad and weak peak which tends towards amorphous phase then the peak Al3Ni arises from (Mg2Ni)0.9Al0.1 by the ball milling for 15 hours. The agglomeration phenomenon is due to the surface tension increases with fine powder after 15 hours of ball milling. The Mg2Ni prepared by IECP after 15 hours of ball milling activates for an hour to absorb hydrogen 3.0wt.% under 3000C and 40atm. The PCI curve of (Mg2Ni)0.9Al0.1 is by 15 hours of ball milling can be observed dehydriding plateau that pressure is 0.16atm and dehydrogen amount is 0.6wt.% at 2000C.
關鍵字(中) 關鍵字(英) ★ amorphous
★ mechanical alloying
★ Mg2Ni
論文目次 總 目 錄
頁數
中文摘要..................................................I
英文摘要.................................................II
謝誌....................................................III
總目錄...................................................IV
圖目錄..................................................VII
表目錄...................................................IX
一、前言..................................................1
二、文獻回顧
2.1 儲氫合金簡介......................................3
2.2 儲氫元素與合金
2.2.1 儲氫元素...................................4
2.2.2 儲氫合金...................................5
2.3 儲氫合金的吸放氫特性
2.3.1 儲氫合金的動力學性質......................14
2.3.2 儲氫合金的熱力學性質......................15
2.3.3 活化......................................17
2.3.4 平台區斜率................................18
2.3.5 遲滯......................................18
2.3.6 熱爆......................................19
2.3.7 氫氣內部雜質氣體對儲氫合金之影響..........19
2.3.8 儲氫合金之循環穩定性......................20
2.4 儲氫合金的應用
2.4.1 儲氫容器..................................21
2.4.2 氫純化....................................22
2.4.3 熱泵......................................23
2.4.4 電動車用電池..............................25
2.4.5 催化劑....................................26
2.5 製備儲氫合金方法
2.5.1 機械合金法原理............................28
2.5.2 機械合金法製備鎂鎳系儲氫合金..............30
三、實驗方法
3.1合金配製、機械合金法與退火處理
3.1.1 合金配製..................................34
3.1.2 機械合金法................................34
3.1.3 退火處理..................................35
3.2粉體結構、表面觀察與熱行為
3.2.1 粉體結構..................................36
3.2.2 粉體表面型態..............................36
3.2.3 粉體熱行為................................37
3.3 儲氫合金特性
3.3.1動力學曲線.................................37
3.3.2 P-C-I曲線.................................38
四、結果與討論
4.1 粉體結構分析、表面型態與熱行為
4.1.1 IECP法所製備的Mg2Ni合金....................39
4.1.2機械合金法球磨IECP法所製備的Mg2Ni合金......40
4.1.3機械合金法球磨配製的(Mg2Ni)0.9Al0.1粉體..... ...45
4.1.4球磨15小時後退火處理之Mg2Ni合金............49
4.2 粉體初始活化速率、吸氫動力與吸放氫曲線
4.2.1機械合金法球磨IECP法所製備的Mg2Ni合金......53
4.2.2機械合金法球磨配製(Mg2Ni)0.9Al0.1粉體....... ...58
4.2.3球磨15小時後退火處理之Mg2Ni合金............62
五、結論.................................................65
六、未來研究方向.........................................66
七、參考文獻.............................................67
參考文獻 1﹒B.D. Solomon and A. Banerjee, A Global Survey of Hydrogen Energy Research,
Development and Policy , Energy Policy, Vol.34, pp.781-792, 2006.
2﹒L.M. Das,“On-Board Hydrogen Storage Systems for Automotive Application”,
Int. J. Hydrogen Energy, Vol.21, pp.789-800, 1996.
3﹒經濟部能源局,“金屬儲氫應用技術研討會”, p.4-17, 2005.
4﹒V. Guther , A. Otto,“Recent Developments in Hydrogen Storage Applications
Based on Metal Hydrides”, J. Alloys Comp., Vol.293-295, pp.889-892, 1999.
5﹒H. Suzuki, Y. Osumi, A. Kato, et al.,“Development of A Hydrogen Storage
System Using Metal Hydrides”, J. Less-Common Met., Vol.89, p.545, 1983.
6﹒Q.D. Wang, C.P. Chen, Y.Q. Lei,“The Recent Research, Development and
Industrial Applications of Metal Hydrides in the People’s Republic of
China”, J. Alloys Comp., Vol.253-254, pp.629-634, 1997.
7﹒G.L. Lu, L.S. Chen, X.R. Hu, et al.,“The Crystal Structure of New Hydrogen
Storage Mg3MNi2(M=Al,Ti)alloys”, Acta Metall Sinica, Vol.37, pp.459-62, 2001
8﹒T. Graham,“On the Relation of Hydrogen to Palladium”, J. Franklin Inst.,
Vol.87, pp.256-266, 1869.
9﹒M. Jurczyk, L. Smardz, K. Smardz, et al.,“Nanocrystalline LaNi5-type
Electrode Materials for Ni-MHx Batteries”, J. Solid State Chem., Vol.171,
p.30, 2003.
10﹒J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning,“Reversible Room-Temperature
Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”,
Philips Res. Repts., Vol.25, p.133, 1970.
11﹒A. Pebler and E.A. Gulbransen,“Equilibrium Studies on the Systems ZrCr2-H2,
ZrV2-H2 and ZrMo2-H2 Between 0℃ and 900℃”, Trans. Metall. Soc. AIME,
Vol.239, p.1593, 1967.
12﹒J.J. Reilly, R.H. Wiswall,“The Reaction of Hydrogen with Alloys of
Magnesium and Nickel and the Formation of Mg2NiH4”, Inorg. Chem., Vol.7,
p.2254, 1968.
13﹒J.J. Reilly, R.H. Wiswall,“Formation and Properties of Iron Titanium
Hydride”, Inorg. Chem., Vol.13, p.218, 1974.
14﹒林美姿, “儲氫合金之開發與應用”, 材料與社會, Vol.81, p.61, 1993.
15﹒廖世傑,“儲氫技術及應用簡介”, 工業材料, Vol.190, p.139, 2002.
16﹒G.G. Libowitz,“Proceedings of the Symposium on Hydrogen Storage Materials,
Batteries, and Electrochemistry”, Electrochemical Society, NJ, Vol.92-5,
p.3, 1991.
17﹒大角泰章著,“金屬氫化物的性質與應用”,吳永寬,苗艷秋譯. 北京:化學
工業出版社, pp.19-40, 1990.
18﹒G. Sandrock,“A Panoramic Overview of Hydrogen Storage Alloys From a Gas
Reaction Point of View”, J. Alloys Comp., Vol.293-295, p.877, 1999.
19﹒Q. Li, K.C. Chou, Q. Lin, et al.,“Influence of the Initial Hydrogen
Pressure on the Hydriding Kinetics of the Mg2-xAlxNi(x=0,0.1) Alloys”,
Int. J. Hydrogen Energy, Vol.29, pp.1383-1388, 2004.
20﹒S.S. Penner,“Steps Toward the Hydrogen Economy”, Energy, Vol.31, pp.33-43
2006.
21﹒D.M. Kim, K.J. Jang, J.Y. Lee,“A Review on the Development of AB2-Type Zr-
Based Laves Phase Hydrogen Storage Alloys for Ni-MH Rechargeable Batteries
In the Korea Advanced Institute of Science and Technology”, J. Alloys
Comp., Vol.293-295, pp.583-592, 1999.
22﹒T. Kodama,“Proposal for New Indexes Describing the Degree of Hysteresis
and Those Applications to the ZrMn2–H2 Systems”, J. Alloys Comp.,
Vol.278, pp.194-200, 1998.
23﹒J.M. Joubet, M. Latroche,“Hydrogen Absorption Properties of Several Inter-
metallic Compounds of the Zr---Ni System”, J. Alloys Comp., Vol.231,
pp.494-497, 1995.
24﹒M. Hara, Y. Hatano, T. Abe, et al.,“Hydrogen Absorption by Pd-Coated ZrNi
Prepared by Using Barrel-Sputtering System”, J. Nuclear Materials, Vol.320,
pp.265-271, 2003.
25﹒B.K. Singh, A.K. Singh, A.M. Imam, et al.,“On the Structural
Characteristics and Hydrogenation Behaviour of TiMn1.5 Hydrogen Storage
Material ”, Int. J. Hydrogen Energy, Vol.26, pp.817-821, 2001.
26﹒C.H. Chiang, Z.H. Chin, T.P. Perng,“Hydrogenation of TiFe by High-Energy
Ball Milling”, J. Alloys Comp., Vol.307, p.259, 2000.
27﹒G. Lee, J.S. Kim, Y.M. Koo, S.E. Kulkova,“The Adsorption of Hydrogen on B2
TiFe Surfaces”, Int. J. Hydrogen Energy, Vol.27, pp.403-412, 2002.
28﹒R. Janot, L. Aymard, A. Rougier, et al.,“Fast Hydrogen Sorption Kinetics
for Ball Milled Mg2Ni Alloys”, Journal of Physics and Chemistry of Solids,
Vol.65, pp.529-534, 2004.
29﹒K. Aoki, H. Aoyagi, A. Memezawa and T. Masumoto,“Effect of Ball Milling on
the Hydrogen Absorption Rate of FeTi and Mg2Ni Compounds”, J. Alloys
Comp., Vol.203, pp.L7-L9, 1994.
30﹒J.L. Lou, N. Cui,“Effects of microencapsulation on the electrode behavior
of Mg2Ni-based hydrogen storage alloy in alkaline solution”, J. Alloys
Comp., Vol.264, p.299, 1998.
31﹒M. Martin, C. Gommel, C. Borkhart, E. Fromm,“Absorption and Desorption
Kinetics of Hydrogen Storage Alloys”, J. Alloys Comp., Vol.238, p.193, 1996
32﹒A. Anani, A. Visintin, K. Petrov and S. Srinivasan,“Alloys for Hydrogen
Storage in Nickel/Hydrogen and Nickel/Metal Hydride Batteries”, Journal of
Power Sources, Vol.47, pp.261-275, 1994.
33﹒T.B. Flanagan and W.A. Oates,“Some Aspects of Equilibrium and Non-
Equilibrium Phenomena in Intermetallic Compound and Alloy Hydrides”,
J. Less-Common Met., Vol.100, p.299, 1984.
34﹒R.C. Bowman,“Preparation and Properties of Amorphous Hydrides”, Materials
Science Forum, Vol.31, p.197, 1988.
35﹒K. Aoki, T. Masumoto and J. Kamachi,“Hydrogen Absorption and Desorption
Properties of Amorphous Ti---Ni and Hf---Ni Alloys”, J. Less-Common Met.,
Vol.113, p.33, 1985.
36﹒A. Zuttel,“Materials for Hydrogen Storage”, Materials Today, Vol.6, p.24,
2003
37﹒C.E. Lundin and F.E. Lynch,“in Record of the tenth Intersociety Energy
Conversion Engineering Conference”, p.1380, 1975.
38﹒K. Aoki, M. Kamachi, T. Masumoto,“Thermodynamics of Hydrogen Absorption
in Amorphous Zr-Ni Alloys”, J. Non-Cryst. Solids, Vol.61-62, p.679, 1984.
39﹒V.K. Sinha and W.E. Wallace,“The Hyperstoichiometric ZrMn1+xFe1+y−H2
System II: Hysteresis Effect”, J. Less-Common Met., Vol.91, p.239, 1983.
40﹒M.N. Mungole and R. Balasubramaniam,“Effect of Hydrogen Cycling on the
Hydrogen Storage Properties of MmNi4.2Al0.8”, Int. Hydrogen Energy,
Vol.25, p.55, 2000.
41﹒F.G. Eisenberg, P.D. Goodell,“Cyclic Response of Reversible Hydriding
Alloys in Hydrogen Containing Carbon Monoxide”, J. Less-Common Met.,
Vol.89, p.55, 1983.
42﹒M.J. Benham and D.K. Ross,“Inelastic Neutron Scattering Studies of Multiply
Cycled Lanthanum-Nickel Hydride”, Zeitschrift fur Physikalische Chemie,
Vol.147, p.219, 1986.
43﹒V.Z. Mordkovich, N.N. Korostyshevsky, Y.K. Baychtok, et al.,“Degradation
of LaNi5 by Thermobaric Cycling in Hydrogen and Hydrogen-Nitrogen Mixture”,
Int. Hydrogen Energy, Vol.15, p.723, 1990.
44﹒林文德,廖世傑,“儲氫系統設計”, 工業材料, Vol.190, p.155, 2002.
45﹒J.J. Sheridan, F.G. Eisenberg, E.J. Greskovich, et al.,“Hydrogen
Separation From Mixed Gas Streams Using Reversible Metal Hydrides”, J.
Less-Common Met., Vol.89, p.447, 1983.
46﹒M. Kawamura, S. Ono, Y. Mizuno,“Dynamic Characteristics of a Hydride Heat
Storage System”, J. Less-Common Met., Vol.89, p.365, 1983.
47﹒大角泰章著,“金屬氫化物的性質與應用”,吳永寬,苗艷秋譯. 北京:化學
工業出版社, p.240, 1990.
48﹒G. Anevi, L. Jansson, D. Lewis,“Dynamics of Hydride Heat Pumps”, J. Less-
Common Met., Vol.104, p.341, 1984.
49﹒M. Ron,“A Hydrogen Heat Pump as a Bus Air Conditioner”, J. Less-Common
Met., Vol.104, p.259, 1984.
50﹒E. Tuscher, P. Weinzierl, J. Eder,“Dynamic Hydrogen Sorption And Its
Influence on Metal Hydride Heat Pump Operation”, Int. Hydrogen Energy,
Vol.9, p.783, 1984.
51﹒M.S. Vreeke, D.T. Mah, C.M. Doyle,“Report of the Electrolytic Industries
for the Year 1997”, J. Electrochem. Soc., Vol.145, p.3684, 1998.
52﹒鍾俐娟,“電動車的發展概況”, 材料與社會, Vol.80, p.123, 1993.
53﹒D.F. Gosden,“Battery Requirements for Electric Vehicles”, Journal of
Power Sources, Vol.45, pp.61-71, 1993.
54﹒F. Zhan, L.J. Jiang, B.R. Wu, et al.,“Characteristics of Ni/MH Power
Batteries and Its Application to Electric Vehicles”, J. Alloys Comp.,
Vol.293-295, p.804, 1999.
55﹒H. Imai, T. Tagawa, K. Nakamura,“Catalytic Activities of Hydrogen Storage
Alloys for Decompositon of Alcohols”, Appl. Catal., Vol.62, p.348, 1990.
56﹒T. Takeshita, W.E. Wallace, R.S. Craig,“Rare Earth Intermetallics as
Synthetic Ammonia Catalysts”, J. Catal., Vol.44, p.236, 1976.
57﹒J.S. Benjamin,“Dispersion Strengthened Superalloys by Mechanical
Alloying”, Metallurgical Transactions, Vol.10, p.2943, 1970.
58﹒H. Sakaguchi, T. Sugioka and G.Y. Adachi,“Hydrogen Absorption
Characteristics of Crystalline LaNi5 Prepared by Mechanical Alloying”,
Chemistry Letters, Vol.7, p.561, 1995.
59﹒C. Suryanarayana,“Mechanical Alloying and Milling”, Prog. Mater. Sci.,
Vol.46 p.1, 2001.
60﹒R.K. Ibrasheva, T.A. Solomina, G.I. Leonova, et al.,“Role of Active
Surface in Processes of Hydrogen Sorption-Desorption by Intermetallic
Compounds”, Int.J. Hydrogen Energy, Vol.18, pp.505-510, 1993.
61﹒C. Suryanarayana,“Does a disordered γ-TiAl phase exist in mechanically
alloyed Ti---Al powders? ”, Intermetallics, Vol.3, pp.153-160, 1995.
62﹒A. Calka and J.S. Williams,“Synthesis of Nitrides by Mechanical Alloying”,
Materials Science Forum, Vol.88-90, p.787, 1992.
63﹒Y. Chen and J. Williams,“Hydriding Reaction Induced by Ball Milling”,
Materials Science Forum, Vol.225-227, p.881, 1996.
64﹒J.H. Woo, C.B. Jung, J.H. Lee, and K.S. Lee,“Electrochemical
Characteristics of Nanocrystalline ZrCr2 and Mg2Ni Type Metal Hydrides
Prepared by Mechanical Alloying”, J. Alloys Comp., Vol.293-295, pp.556-
563, 1999.
65﹒J. Chen, P. Yao, D.H. Bradhurst, et al.,“Mg2Ni-Based Hydrogen Storage
Alloys for Metal Hydride Electrodes”, J. Alloys Comp., Vol.293-295,
p.675, 1999.
66﹒T. Kohno, M. Yamamoto, and M. Kanda,“Electrochemical Properties of Mecha
nically Ground Mg2Ni Alloy”, J. Alloys Comp., Vol.293-295, p.643, 1999.
67﹒A. Gasiorowski, W. Iwasieczko, D. Skoryna, et al.,“Hydriding Properties of
Nanocrystalline Mg2−xMxNi Alloys Synthesized by Mechanical Alloying (M=Mn,
Al)”, J. Alloys Comp., Vol.364, pp.283-288, 2004.
68﹒L. Zaluski, A. Zaluska, J.O. Strom-Olsen,“Hydrogen Absorption in Nano-
crystalline Mg2Ni Formed by Mechanical Alloying”, J. Alloys Comp.,
Vol.217, p.245, 1995.
69﹒T. Kohno and M. Kanda,“Effect of Partial Substitution on Hydrogen Storage
Properties of Mg2Ni Alloy”, J. Electrochem. Soc., Vol.144, p.2384, 1997.
70﹒H. Aoyagi, K. Aoki, T. Masumoto,“Effect of Ball Milling on Hydrogen
Absorption Properties of FeTi, Mg2Ni and LaNi5”, J. Alloys Comp., Vol.231,
p.804, 1995.
71﹒M. Bououdina, Z.X. Guo,“Comparative Study of Mechanical Alloying of
(Mg+Al) and (Mg+Al+Ni) Mixtures for Hydrogen Storage”, J. Alloys Comp.,
Vol.336, p.222, 2002.
72﹒L. Zaluski, A. Zaluska and J.O. Strom-Olsen,“Nanocrystalline Metal
Hydrides”J. Alloys Comp., Vol.253-254, p.70, 1997.
73﹒T. Spassov, P. Solsona, S. Surinach, M.D. Baro,“Optimisation of the Ball-
Milling and Heat Treatment Parameters for Synthesis of Amorphous and
Nanocrystalline Mg2Ni-Based Alloys”, J. Alloys Comp., Vol.349, p.242, 2003.
74﹒M.Y. Song, M. Pezat, B. Darriet, P. Hagenmuller,“A Kinetic Study on the
Reaction of Hydrogen with Mg2Ni”, J. Solid State Chem., Vol.56, p.191,
1985.
75﹒R. Kirchheim, F. Sommer, and G. Schluckebier,“Hydrogen in Amorphous Metals
”, Acta Metall., Vol.30, p.1059, 1982.
76﹒T. Sato, H. Blomqvist, D. Noreus,“Attempts to Improve Mg2Ni Hydrogen
Storage by Aluminium Addition”, J. Alloys Comp., Vol.356-357, p.494, 2003.
77﹒L.B. Wang, J.B. Wang, H.T. Yuan, et al.,“An Electrochemical Investigation
of Mg1-xAlxNi (0≦x≦0.6)Hydrogen Strorage Alloys”, J. Alloys Comp.,
Vol.385, p.304, 2004.
指導教授 李勝隆(Sheng-long Lee) 審核日期 2006-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明