博碩士論文 93323051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.129.211.87
姓名 江炫毅(Hsuan-Yi Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 燃料電池性能及水傳輸之模擬分析
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
本文主要藉由兩相流理論,建立PEMFC燃料電池二維,穩態及等溫的單電池模型,討論陰極支撐層(Backing layer: 包含氣體擴散層(GDL)與微孔層(MPL))及催化層(CL)兩部分建立其數學模型及邊界條件,探討不同區域所產生的源項和改變操作條件及性能特性對電池性能的影響。
陰極支撐層是以多成分模式考慮、主要成分有氮氣、氧氣、水汽與生成之液態水,討論氧氣、水汽與液態水在多孔介質中的分布。支撐層中的微孔層是一有細緻孔洞的多孔介質薄層,藉由微孔層的細緻孔洞,可防止催化層中觸媒掉落與減少催化層與氣體擴散層之間的接觸阻抗,另外可以將催化層所產生的液態水細化成小水珠以利於排除。本文中,藉由兩相流模型與理論,考慮氣體擴散層與微孔層之孔隙率、滲透率與接觸角以及氣體擴散層因擠壓而產生不同厚度的條件下,對液態水生成情況與電池性能的影響。催化層則是討論電化學反應中氧氣的傳遞以及產生之電流密度與液態水的分布情況,電化學反應是用Bulter-Volmer方程式來描述。
研究結果顯示水汽與液態水之蒸發與凝結效應對燃料電池性能與液態水生成皆有顯著的影響。氣體與液體之間拖曳力則會使液態水的移動速度降低,造成液態水在催化層與氣體擴散層中堆積使電池性能下降。然而在考慮不同接觸角時,在氣體擴散層擁有較大與較小接觸角,其對於液態水皆有較佳的排除能力,因此可獲得較佳的電池性能。
本研究最後探討氣體擴散層受擠壓的區域中孔隙率與滲透率變化的影響。當孔隙率與滲透率因受擠壓而變小會迫使部分原本經由受擠壓的氣體擴散層至出口的氧氣改經由催化層到達出口,而使得燃料電池有較佳的氧氣利用效率及較好的性能。
摘要(英) Abstract
In this study, a two-dimensional, steady, and isothermal single cell model for a PEM fuel cell is established using a two phase flow theory. Backing layer, including gas diffusion layer (GDL) and micro porous layer (MPL), and catalyst layer (CL) are discussed to build the mathematical model with boundary conditions. Effects of various source terms, operating conditions, and properties on the performance of fuel cells are discussed.
The fluid in the backing layer is composed of nitrogen, oxygen, steam, and liquid water. Their distributions are presented and discussed. The MPL can prevent the catalysts from falling into the GDL and con reduce the interface resistance between the MPL and GDL due to their fine pores. The liquid water can be more easily drawn out of the CL due to the enhanced capillary force at the interface. The effects of the porosity, the permeability, and the contact angle of the gas diffusion layer and the micro porous layer are studied. Effects of compressed thickness of the GDL and the above three factors on the production of water and the performance of the fuel cell are studied, The transport of oxygen in the electrochemical reaction, the current density, and the distribution of liquid water in catalysis layer are also investigated. The electrochemical reaction is described by the Bulter-Volmer equation.
The results of this study indicate that the evaporation and condensation of water has significant effects on the performance of fuel cells and the production of liquid water. The drag force between the gas and the liquid slows down the speed of liquid water. The accumulated liquid water in the catalyst layer and the gas diffusion layer degrades the performance of the fuel cells. As far the effects of the contact angle, very lag or very small contact angles in the GDL facilitate the removal of liquid water and results in better cell performance.
Finally, the effects of the porosity and the permeability of the compressed regions in the GDL are analyses. The influx of oxygen to the CL would change because of the smaller porosity and permeability due to compression. More oxygen is directed to the CL, and the cell performance is there fore enhanced.
關鍵字(中) ★ 孔隙率
★ 接觸角
★ 滲透率
★ 微孔層
★ 燃料電池
★ 兩相流
★ 二維
關鍵字(英) ★ porosity
★ permeability
★ contact angle
★ fuel cell
★ two phase flow
★ micro porous layer
論文目次 目錄
摘要 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥I
誌謝 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥V
目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥VII
表目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥X
圖目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥XI
符號表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥XV
第一章 緒論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.1 前言 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.2 燃料電池的設計與運作原理 ‥‥‥‥‥‥‥‥‥‥‥2
1.3 燃料電池的極化現象 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥9
1.4 燃料電池的優點‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥11
1.5 文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥13
1.6 研究目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥25
第二章 理論分析 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥27
2.1 基本假設與幾何模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥28
2.2 陰極燃料電池之數學模型‥‥‥‥‥‥‥‥‥‥‥‥29
2.2.1 分相流‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29
2.2.2 Unsaturated Flow Theory (UFT) ‥‥‥‥‥‥‥32
2.2.3 平衡條件‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥35
2.3 模型1 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥36
2.4 模型2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥41
第三章 數值方法 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥43
3.1 有限體積法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥43
3.1.1 質量、動量與物種方程式‥‥‥‥‥‥‥‥‥‥‥43
3.1.2 壓力修正方程式‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥45
3.2 程式疊代程序‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47
3.3 程式驗證‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥48
第四章 結果與討論 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
4.1 產生水時的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
4.1.1 凝結效應的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥50
4.1.2 蒸發效應的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥52
4.1.3 重力效應的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥53
4.1.4 液氣介面間有拖曳力的影響‥‥‥‥‥‥‥‥‥‥53
4.2 氣體擴散層,微孔層與催化層 ‥‥‥‥‥‥‥‥‥‥54
4.2.1 孔隙率的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥54
4.2.2 滲透率的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥56
4.2.3 有加入微孔層下滲透率的影響‥‥‥‥‥‥‥‥‥58
4.2.4 接觸角的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥59
4.2.5 有加入微孔層下接觸角的影響‥‥‥‥‥‥‥‥‥60
4.3 指叉型流道中氣體擴散層,微孔層與催化層 ‥‥‥‥60
4.3.1 孔隙率的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61
4.3.2 滲透率的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥62
4.3.3 接觸角的影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥63
4.3.4 氣體擴散層受到擠壓時的影響‥‥‥‥‥‥‥‥‥63
第五章 結論與建議 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥67
5.1 結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥67
5.2 未來研究方向與建議‥‥‥‥‥‥‥‥‥‥‥‥‥‥68
參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥71
附錄一‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥76
附錄二‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥86
參考文獻 [1].Linda M. Abriola, George F. Pinder, “A Multiphase Approach to the Modeling of Porous Media Contamination by Organic Compounds Ⅰ., Equation Development,” Water Resources Research, V. 21, N. 1, pp.11-18, (1985).
[2].Linda M. Abriola, George F. Pinder, “A Multiphase Approach to the Modeling of Porous Media Contamination by Organic Compounds Ⅱ., Numerical Simulation,” Water Resources Research, V. 21, N. 1, pp.19-26, (1985).
[3].C.Y. Wang, C. Beckermann, “A two-phase mixture model of
liquid-gas flow and heat transfer in capillary porous media Ⅰ. Formulation,” Int. J. Heat Mass Trasfer, V. 36, N. 11, pp.2747-2758, (1993).
[4].C.Y. Wang, C. Beckermann, “A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media Ⅱ., Application to pressure-driven boiling flow adjacent to a vertical heated plate,” Int. J. Heat Mass Trasfer, V. 36, N. 11, pp.2759-2768, (1993).
[5].C.Y. Wang, P. Cheng, “A multiphase mixture model for multiphase multicomponent transport in capillary porous media Ⅰ., model development,” Int. J. Heat Mass Transfer, V.39, N. 17, pp.3607-3618, (1996).
[6].C.Y. Wang, P. Cheng, “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media Ⅱ., Numerical simulation of the transport of organic compounds in the subsurface,” Int. J. Heat Mass Transfer, V. 39, N. 17, pp.3619-3632, (1996).
[7].C.Y. Wang, P. Cheng, “Multiphase Flow and Heat Transfer in Porous Media,” Advances in Heat Transfer, V.30, pp.93-189, (1997).
[8].Ekdunge P., Broka K., “Modeling the PEM Fuel Cell Cathode,” J. Appl. Electrochem., V. 27, pp.281, (1997).
[9].D. Singh, D.M. Lu, N. Djilali, “Two-dimensional analysis of mass transport in proton exchange memebrane fuel cells,” Int. J. Engineering Science, V. 37, pp.431-452, (1999).
[10].Sukkee Um, C.Y. Wang, K.S. Chen, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J. Electro- chemical Society, V.147, pp.4485-4493, (2000).
[11].I-Ming Hsing, Peter Futerko, “Two-dimensional simulation of water transport in polymer electrolyte fuel cells,” Chemical Engineering Science, V.55, pp.4209-4218, (2000).
[12].Z.H. Wang, C.Y. Wang, K.S. Chen, “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells,” J. Power Sources, V. 94, pp. 40-50, (2001).
[13].R. Bradean, K. Promislow, B. Wetton, “Transport phenomena in the porous cathode of a proton exchange membrane fuel cell,” Numerical Heat Transfer, Part A, V. 42, pp.121-138, (2002).
[14].Hongtan Liu, Tianhong Zhou, “Numerical simulation of performance of PEM fuel cells,” International Conference on Computational Heat and Mass Transfer.
[15].T. Berning, D.M. Lu, N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell,” J. Power Sources, V.106, pp.284-294, (2002).
[16].Lixin You, Hongtan Liu, “A two-phase flow and transport model for the cathode of PEM fuel cells,” Int. J. Heat Mass Transfer, V. 45, pp. 2277-2287, (2002).
[17].J. Soler, E. Hontañón, L. Daza, “Electrode permeability and flow-field configuration influence on the performance of a PEMFC,” J. Power Sources, V. 118, pp. 172-178, (2003).
[18].Lin Wang, Attila Husar, Tianhong Zhou, Hongtan Liu, “A parametric study of PEM fuel cell performances,” Int. J. Hydrogen Energy, V. 28, pp. 1263-1272, (2003).
[19].Hsin-Sen Chu, Chung Yeh, Falin Chen, “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell,” J. Power Sources, V. 123, pp.1-9, (2003).
[20].N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, “A two-dimensional computational model of a PEMFC with liquid water transport,” J. Power Sources, V. 128, pp. 173-184, (2004).
[21].Ugur Pasaogullari, C.Y. Wang, “Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells,” J. Electrochemical Society, V. 151, A399-A406, (2004).
[22].Ugur Pasaogullari, C.Y. Wang, “Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells,” Electrochimica Acta, V. 49, pp. 4359-4369, (2004).
[23]. Xun-Liang Liu,Ya-Wei Tan,Wen-Quan Tao,Ya-Ling He, “A hybrid model of cathode of PEM fuel cell using the interdigitated gas distributor,” Int. J. Hydrogen Energy, V. 33, pp. 379-389, (2006).
[24].黃柏瑄,PEMFC電極及觸媒層之電熱流傳輸現象探討,91年7月。
[25].羅世坤,流場設計對質子交換膜燃料電池性能之研究,92年6月。
[26].江彥德,質子交換膜燃料電池因極端支兩相流模擬與研究,94年6月。
[27].M. Kaviany, “Principles of Heat Transfer in Porous Media.”
[28] .V. X. Tung and V. K. Dhir, “A hydrodynamic model for two-phase flow through porous media,” Int. J. Multiphase Flow V. 14, No. 1, pp. 47-65, (1988).
[29]. V. X. Tung and V. K. Dhir, “finite element solution of multi-dimensional two-phase flow through porous media with arbitrary heating conditions,” Int. J. Multiphase Flow V. 16, No. 6, pp. 985-1002, (1990).
[30] .Weisbrod KR, Grot SA, Vanderborgh NE, “Through-the-eletrode
model of a proton exchange membrane fuel cell,” Electrochem. Soc. Proc., (1995).
[31].Dawn M. Bernardi, Mark W. Verbrugge, “Mathematical model of a gas duffusion electrode bonded to a polymer electrolyte,” AIChE J., V. 37, pp. 1151-1163, (1991).
[32].Dawn M. Bernardi, Mark W. Verbrugge, “A mathematical model of the solid-polymer-electrolyte fuel cell,” J. Electrochem. Soc., V. 139, pp. 2477-2491, (1992).
[33].Arvind Parthasarathy, Supramaniam Srinivasan, A. John Appleby, “Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface – A Microelectrode Investigation,” J. Electrochem. Soc., V. 139, pp. 2530-2537, (1992).
[34].Suhas V. Patankar, “Numerical Heat Transfer and Fluid Flow.”
[35].Adrian Bejan, Donald A. Nield, “Convection in Porous Media.”
[36].E.L. Cussler, “Mass transfer in fluid systems.”
[37].F.P. Incropera, D.P. DeWitt, “Fundamentals of Heat and Mass Transfer.”
[38].K.Z. Yao, K. Karan, K.B. McAuley, P. Oosthuizen, B. Peppley, T. Xie, “A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells,” Fuell Cells, V. 4, pp. 3-29, (2004).
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明