博碩士論文 93323063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.189.170.17
姓名 林清盛(Ching-Sheng Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 週期式圓錐平板裝置之流場分析
(Analyze the flow field in the periodical Cone-and-Plate apparatus)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 設計與製作圓錐平板型生物反應器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在近代的醫學工程中,發展出了一項新技術—組織工程,此技術的最終目的是希望能在體外培養出與人體器官相同的組織或細胞,進而去修補人體內受損或失去機能的部分以維持身體的機能。在培養細胞的生物反應器中,其中一種為圓錐平板型生物反應器,其特色是可同時提供層流及紊流形式的流場,且可維持平板上之剪應力近乎定值,方便我們控制生長環境的剪應力。本文希望分析細胞培養於平板表面時,所承受之剪應力,以提供培養細胞時的一個參考依據。利用套裝軟體Fluent模擬圓錐平板式裝置中的流場,改變參數Re(慣性力與黏滯力的比值)、 (轉速振幅與平均轉速的比值)、 (非定常慣性力與黏滯力的比值)來瞭解其對流場及平板上剪應力的影響,並與先前學者的研究結果相比較,以確認結果的準確性。計算結果顯示,隨著以上三項參數的增加,流場更容易形成紊流。觀察流場中各項速度及紊流動能的分布,發現系統中紊流是由圓錐表面開始形成再向平板表面延伸,同時由圓錐外圍開始形成再向內部延伸;以及隨著 增加,流體會跟不上圓錐轉動的速度而產生延遲現象。
摘要(英) Tissue engineering is a new biomedical technology which makes an attempt to cultivate tissues or cells in vitro so as to repair damaged or malfunctioned parts of human organ and maintain normal functions of the body. Cone-and-plate apparatus is a bioreactor which provides laminar and turbulent flows at the same time, and the shear stresses over the plate are virtually constant. Such a feature provides a convenient way to control the shear force that is applied on the cultured cells.To mimic the physiological environment, the shear stresses produced in a bioreactor should be unsteady. Although the shear flow in a cone-and-plate device was well studied before, the parameter regimes of the laminar and turbulent flows have not been well defined for unsteady cases.
In this search, we employed a commercial software to simulate the flow domain in a Cone-and-plate apparatus and changed parameters Re (the ratio of inertial force to viscous force)、 (the ratio of angular velocity amplitude to average angular velocity)、 (the ratio of unsteady inertial force to viscous force) to understand how these parameters influence flow behavior and the shear force on the plate. Results show the unsteady laminar flow transited to turbulence flow easier and the theoretical range became smaller when these parameters were increased. By observing the distribution of the velocity and the turbulence kinetic energy in the flow, we found turbulent flow commenced from the surface and outer region of the cone, then extended simultaneously toward the surface of the plate and the inner region of the cone. Results also show the fluid could not follow the rotational velocity of the cone so that velocity lag phenomena occured when was increased.
關鍵字(中) ★ 組織工程
★ 圓錐平板型生物反應器
★ 剪應力
★ 紊流動能
關鍵字(英) ★ shear stress
★ cone-and-plate
★ tissue engineering
★ turbulence kinetic energy
論文目次 目錄
中央大學碩士論文授權書
誌謝
中文摘要
英文摘要
目錄............................................................................I
圖目錄........................................................................III
符號說明......................................................................VII
第一章 緒論.................................................................1
1.1. 前言...............................................................1
1.2. 研究背景...........................................................2
1.3. 研究動機...........................................................4
第二章 計算模式............................................................6
2.1. 數學模式...........................................................6
2.1.1. 層流模式.........................................................7
2.1.2. 紊流模式.........................................................7
2.1.3. 邊界條件........................................................12
2.2. 計算方法..................................................................14
2.2.1. Fluent簡介......................................................14
2.2.2. 網格設計........................................................15
2.2.3. 座標設定........................................................15
2.2.4. 流體性質設定....................................................16
2.2.5. 邊界條件設定....................................................16
2.2.6. 相對誤差........................................................16
2.2.7. 非定常模式的收斂條件............................................17
第三章 定常轉速的流場分析..................................................20
3.1. 平板扭矩..........................................................20
3.2. 結果與討論........................................................22
第四章 週期轉速的流場分析..................................................45
4.1. 平板扭矩..........................................................45
4.2. 雷諾數的影響......................................................46
4.3. 轉速比的影響......................................................50
4.4. 轉動頻率的影響....................................................55
第五章 平板剪應力..........................................................94
5.1. 平板剪應力的分析..................................................94
5.2. 真實的培養參數....................................................97
第六章 結論...................................................................110
參考文獻......................................................................113
參考文獻 1. Brown, T.D., 2000. Techniques for mechanical stimulation of cells in vitro:a review. Journal of Biomechanics 33, 3-14.
2. Bussolari, S.R., Dewey, C.F. and Gimbrone, M.A.,1981. Apparatus for subjectingliving cells to fluid shear stress. Rev. Sci. Instrum 53(12), 1851-1854.
3. Buschmann, M.H., Dieterich, P., Adams, N.A. and Schnittler, H.-J., 2005. Analysis of flow in a Cone-and-Plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnology and Bioengineering 89, 493-501.
4. Butler, D.L., 2000. Functional tissue engineering: The role of biomechanics. Journal of Biomechanical Engineering. 122,570-575.
5. Chung. C. A., M. R. Tzou, R. W. Ho, 2005. Oscillatory flow in a Cone-and-Plate Bioreactor. Journal of Biomechanical Engineering 127, 601-610.
6. Chung. C. A., Weng. C. S., Tu. M. Z., 2006. The Periodical Shear Environment of a Cone-and-Plate Bioreactor. Journal of Fluids Engineering 128, 388-393.
7. Cheng, D.C.-H., 1968. The effect of secondary flow on the viscosity measurement using a cone-and-plate viscometers. Chemical Engineering Science 23, 895-899.
8. Cox, D.B., 1962. Radial flow in the cone-plate viscometer. Nature 193, 670.
9. Dewey, C.F., Bussolari, S.R., Gimbrone, M.A.and Davies, P.F., 1981, The dynamic response of vascular endothelial cells to fluid shear stres. J. Biomech. Eng. 103, 177-185.
10. Einav, S., Dewey, C.F., Hartenbaum, H., 1994. Cone-and-plate apparatus : a compact system for studying well-characterized turbulent flow fields. Experiments in Fluids 16, 196-202.
11. Fluent User’s Guide. 2003.
12. Grad, Y., Einav, S., 2000. Spectral and instantaneous flow field characteristics of the laminar to turbulent transition in a cone and plate apparatus. Experiments in Fluids 28, 336-343.
13. Mooney, M., Ewart, R.H., 1934. The conicylindrical viscometer. Physis 5, 350-354.
14. Pelech, I., Shapiro, A.H., 1967. Flexible disk rotating on a gas film next to a wall. Trans. ASME E: J. Appl. Mech. 31, 577-584.
15. Sdougos, H.P., Bussolari, S.R. and Dewey, C.F., 1984. Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech. 138, 379-404.
16. Walters, K., Waters, N.D., 1966. Polymer systems, deformation and flow. In Proc. Brit. Soc. Rheol. Macmmillan.
17. White, F.M., 1991. Viscous Fluid Flow, Second Edition.
18. 呂明憲, 2005. 週期式圓錐平板裝置之設計與量測. 中央大學機械工程學系碩士論文.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2006-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明