博碩士論文 93323073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.210.28.227
姓名 趙依心(Yi-Hsin Chao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高溫觸媒熱再循環燃燒器實作及其應用
(A High-Temperature Sr0.8La0.2MnAl11O19-α Catalytic Heat-Recirculating Burner and Its Application)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究結合熱再循環燃燒和觸媒燃燒兩大技術,開發一高溫觸媒熱再循環燃燒器,主要是應用熱再循環燃燒器(瑞士捲燃燒器,SRB)和高溫觸媒(Sr0.8La0.2MnAl11O19-α),以建構一高效率和幾無NOx排放之燃燒裝置。本實驗使用甲烷與空氣預混燃氣做為燃料,首先針對SRB之基本特性進行評估,含SRB內部整體溫度分布、熱再循環率(heat recirculation rate, HR)和廢氣排放濃度等。之後,建立一高溫觸媒測試平台,定量量測和評估高溫觸媒的各項特性,包含自行製備高溫觸媒粉末、混合燃氣當量比(φ)之影響、高溫觸媒反應所需之初始溫度T0及其反應後之溫度(Tc-out)、燃氣空間速度(SV)之影響、高溫觸媒表面積變化之壽命測試,以及觸媒反應生成物濃度的量測等。最後,結合上述兩者實作設計一高溫觸媒熱再循環燃燒器。量測方面,使用11支K型和R型熱電偶、溫度擷取卡和資料處理軟硬體,可進行長時間的溫度記錄,以及利用煙道氣體分析儀,量測NOx和CO排放濃度。另外,使用掃描式電子顯微鏡(SEM)和氮氣吸附孔隙儀(ASAP)進行高溫觸媒之表面顆粒觀察和觸媒表面積測定。實驗結果顯示,固定φ=0.5時,SRB之整體溫度分布會隨著Ref值增加而上升,且最大溫度量測值均位在SRB中心特別設計之駐焰器附近,顯示駐焰器可將貧油預混甲烷火焰穩定地駐留於燃燒室中心。進一步分析Ref對HR之影響,發現在固定φ=0.5時,HR值會隨著Ref值升高而上升,這表示混合燃氣的流速愈快,使得SRB內部的熱傳導效應愈明顯,故熱再循環效果愈佳。有關高溫觸媒測試方面,當φ=1.3,控制T0=500oC,高溫蜂巢觸媒之Tc-out,會隨SV之增加(76,000~465,000 1/h)而增加,從1,050oC增加至約1,300oC,但當SV等於和大於310,000 1/h,Tc-out即不再上升且略微下降。有關廢氣量測方面,[NOx]和[CO]雖然會隨SV上升而增加,但均低於12 ppm。另外,固定φ=0.5、T0=500oC和SV為76,000 1/h,針對高溫觸媒進行5小時、15小時和52小時的壽命測試,結果顯示其觸媒表面積會呈現遞減的趨勢,從反應前的25 m2/g,依序遞減為16、8和5 m2/g,顯示高溫觸媒和載體製作方面,仍有甚大之改善空間。最後,以SRB當預熱器,將富油甲烷燃氣(φ=1.3)於SRB燃燒後,通入SRB出口端之高溫觸媒區,成功地實作設計出一具極低NOx和CO之高溫觸媒熱再循環燃燒器。
摘要(英) This study aims to construct a high-temperature catalytic heat-recirculating combustor using a Swiss-roll burner (SRB) and a high temperature Sr0.8La0.2MnAl11O19-α catalyst, which features high-efficiency and near-zero [NOx] emissions. Fuels are premixed methane/air mixtures at different equivalence ratios (φ), which are used in a 1.5-turn SRB for the performance test, including measurements of temperature distributions inside the SRB, heat-recirculation rate (HR), concentrations of emissions (NOx and CO), etc. Then, a new reaction platform is designed to quantitatively investigate various characteristics of such high-temperature Sr0.8La0.2MnAl11O19-α catalyst, from its preparation and production to the effect of φ, from temperature variations before and after the honeycomb catalytic sector to the effect of space velocity (SV), and from the degradation of the surface area of such catalyst after long time operation to measurements of emissions. The goal is to combine the above two technologies to design a high-temperature, high-efficient, very-low-NOx burner. The time evolution of temperature distributions inside the SRB are measured using as many as eleven K- and R-type thermocouples for which these data are recorded by a PCLD-818 data acquisition card an a GeniDAQ software at a sampling rate of 1 Hz. Emissions are measured by the standard flue-gas analyzer. The photographs and surface area of the high-temperature catalyst are obtained from the Scanning Electron Microscopy (SEM) and the Accelerated Surface Area and Porosimetry System (ASAP). Results for φ=0.5 reveal that all measured temperature data at various positions of the SRB increase with increasing Ref (Ref=VfDin/ν) increases from 370 to 980, where Vf, Din, and ν are the supply reactant velocity, the SRB channel width, and the kinematic viscosity of reactants, respectively. The highest temperature at various Ref and all occurs near a previously-designed flame holder in the central combustion chamber, confirming the flame holding feature for stable combustion in the center of the SRB. Furthermore, the HR of the SRB is found to be increased with Ref as well. Concerning the high-temperature catalyst, the initial temperature (To) condition to start up the high-temperature catalyst at φ=1.3 is To=500oC. Temperature measurements show that the temperature after the high-temperature catalyst (Tc-out) increases from 1,050oC to 1,300oC when values of SV increase from 76,000 1/h to 465,000 1/h. However, when values of SV are larger or equal to 310,000 1/h, Tc-out not only ceases its increase but also decreases slightly. Values of [NOx] and [CO] are only 1.9 and 2.1 ppm when SV=76,000 1/h. Even for SV=465,000 1/h, values of [NOx] and [CO] are all below 12 ppm. The longevity test of the high-temperature catalyst at φ=0.5, To=500oC, and SV=76,000 1/h show that the surface area of the catalyst would decrease from its initial value 25 m2/g to 5~8 m2/g when about 52 operation hours are applied. Finally, we use the SRB as a pre-heater to burn first rich CH4/air mixtures (φ=1.3), so that its high temperature off-gas (To>500oC) with remaining CH4/air fuels can be further reacted in the high-temperature honeycomb catalytic sector. This new device is believed to be of useful in gas turbine applications and in dealing with many industrial off-gas fuels. Thus, the goals of saving energy and reducing pollutants can be achieved.
關鍵字(中) ★ 超低氮氧化物和一氧化碳排放
★ 高溫觸媒熱再循環燃燒器
★ 空間速度
★ 高溫觸媒
★ 瑞士捲燃燒器
關鍵字(英) ★ space velocity
★ high-temperature catalyst
★ high-temperature catalytic heat-recirculating co
★ very low [NOx] and [CO] emissions
★ Swiss-roll burner
論文目次 摘要 I
英文摘要 II
目錄 II
圖表目錄 VI
符號說明 VIII
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 3
1.4 論文概要 4
第二章 文獻回顧 6
2.1 熱再循環燃燒技術 6
2.1.1熱再循環燃燒原理 6
2.1.2熱再循環燃燒器之研究 7
2.1.3 熱再循環燃燒技術之應用 9
2.2 高溫觸媒燃燒技術 9
2.2.1 觸媒燃燒原理 9
2.2.2 高溫觸媒之研究 10
2.2.3 高溫觸媒燃燒技術之應用 11
第三章 熱再循環燃燒器 18
3.1 SRB實驗系統 18
3.1.1 燃氣供應系統 18
(a) 實驗氣體與流量控制混合裝置 18
(b) 操作條件 19
3.1.2 量測方法 20
(a) 溫度量測系統 20
(b) 生成物濃度量測系統 20
3.2 實驗結果與討論 22
3.2.1 SRB溫度分布探討 22
3.2.2 SRB熱再循環率評估 23
3.2.3 SRB生成物排放分析 24
第四章 高溫觸媒研究及應用 35
4.1 實驗方法 35
4.1.1 高溫觸媒之製備 35
4.1.2 高溫觸媒測試平台 36
4.2 操作條件與流程 36
4.3 結果與討論 37
4.3.1 操作條件 37
4.3.2 高溫觸媒之壽命和表面積測試 38
4.3.3 空間速度效應 38
4.4 高溫觸媒熱再循環燃燒器實作 39
第五章 結論與未來工作 49
5.1 結論 49
5.2 未來工作 50
參考文獻 51
參考文獻 Ahn, J., Eastwood, C., Sitzki, L. & Ronney, P. D. 2005 Gas-phase and catalytic combustion in heat-recirculating burners. Proc. Combust. Inst. 30, 2463-2472.
Chen, M. & Buckmaster, J. 2004 Modelling of combustion and heat transfer in ‘Swiss-roll’ micro-scale combustors. Combust. Theory Modelling 8, 701-720.
Ersson, A. G., Johansson, E. M. & Järås, S. G. 1998 Techniques for preparation of manganese-substituted lanthanum hexaaluminates. Preparation of catalyst 7, 601-608.
Jugjai, S. & Rungsimuntuchart, N. 2002 High efficiency heat-recirculating domestic gas burners. Exp. Thermal Fluid Sci. 26, 581-592.
Kuo, C. H. & Ronney, P. D. 2006 Numerical modeling of heat recirculating combustors. to appear in Proc. Combust. Inst. 31.
Kim., N., Kato. S., Kataoka. T., Yokomori. T., Maruyama. S., Fujimori. T. & Maruta. K. 2005 Flame stabilization and emission of small Swiss-roll combustors as heaters. Combust. Flame 141, 229-240.
Kikuchi, R., Tanaka, Y., Sasaki, K. & Eguchi, K. 2003 High temperature catalytic combustion of methane and propane over hexaaluminate catalysts: NOx emission characteristics. Cataly. Today 83, 233-231.
Lloyd, S. A. & Weinberg, F. J. 1974 A burner for mixtures of very low heat content. Nature 251, 47-49.
Lloyd, S. A. & Weinberg, F. J. 1975 Limits to energy release and utilization from chemical fuels. Nature 257, 367-370.
Machida, M., Kawasaki, H., Eguchi, K. & Arai, H. 1988 Surface areas and catalytic activities of Mn-substituted hexaaluminates with various cation compositions in the mirror plane. Chem. Lett. 17, 1461-1464.
Maruta, K., Takeda, K., Sitzki, L., Borer, K. & Ronney, P. D. 2001 Catalytic combustion in microchannel for MEMS power generation. Proceedings of 3rd Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea, 219-222.
Pfefferle, W. C., Heck, R. M., Carrubba, R. M. & Roberts, G. W. 1975 Catathermal combustion: a new process for low-emission fuel conversion. ASME Paper 75-WA/Fu-1.
Pfefferle, W. C. & Pfefferle, L. D. 1986 Catalytically stabilized combustion. Prog. Energ. Combust. Sci. 12, 25-41.
Pfefferle, L. D. & Pfefferle, W. C. 1987 Catalysis in combustion catalysis. Reviews-Science and Engineering 29, 219-267.
Rostrupnielsen, J. R. & Hansen, J. H. B. 1993 CO2-Reforming of Methane over Transition Metals. J. Catal. 144, 38-49.
Rowe, D. M. 1999 Thermoelectrics, an environmentally-friendly source of electrical power. Renew. Energ. 16, 1251-1256.
Schaevitz, S. B., Franz, A. J., Jensen, K. F. & Schmidt, M. A. 2001 A combustion-based mems thermoelectric power generator. The 11th International Conference on Solid-State Sensors and Actuators, June 10-14, Munich, Germany.
Sinoda, M., Tanaka, R. & Arai, N. 2002 Optimization of heat transfer performances of a heat-recirculating ceramic burner during methane/air and low-calorific-fuel/air combustion. Energ. Convers. Manage. 43, 1479-1491.
Sitzki, L., Borer, K., Schuster, E. & Ronney, P. D. 2001a Combustion in microscale heat-recirculating burner. The 3rd Asia-Pacific Conference on Combustion, June 24-27, Seoul, Korea, 473-476.
Tanaka. R., Sinoda, M. & Arai, N., 2001 Combustion characteristics of a heat-recirculating ceramic burner using a low-calorific-fuel Energ. Convers. Manage. 42, 1897-1907.
Weinberg, F. J. 1986 Advanced Combustion Methods, Academic Press.
Weinberg, F. J., Rowe, D. M., Min, G. & Ronney, P. D. 2002 On thermoelectric power conversion from heat re-circulating combustion systems. Proc. Combust. Inst. 29, 957-963.
吳昇哲 2003 小型熱再循環觸媒燃燒器之實驗研究及應用,國立中央大學機械工程研究所,碩士論文。
楊竣傑 2004 氫能利用:過焓觸媒熱電產生器之實作研究,國立中央大學機械工程研究所,碩士論文。
鄭偉隆 2005 低氮氧化物燃燒器實驗和數值研究及其應用,國立中央大學機械工程研究所,碩士論文。
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明