博碩士論文 93323077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:35.173.48.53
姓名 江彥德(Yen-Te Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 質子交換膜燃料電池陰極端之兩相流模擬與研究
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 矽相關半導體材料光學模式之實驗量測儀器發展★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文主要藉由兩相流理論,建立PEMFC燃料電池二維、定常及等溫的單電池模型,討論陰極支撐層(Backing layer:包含氣體擴散層與微孔層)及催化層兩部分建立其數學模型及邊界條件,來探討不同區域下所產生的源項和改變操作及性能參數的影響。
陰極支撐層是以多成分模式來考慮,主要成分有氮氣、氧氣、水氣與生成液態水,探討氧氣、水氣與生成液態水在多孔介質中的分佈。支撐層中的微孔層是一層有細緻孔洞的多孔介質薄層,藉由微孔層的細緻孔洞,將催化層所產生的液態水細化成小水珠以利於排除。本文中,藉由兩相流模型與理論,考慮氣體擴散層與微孔層之孔隙率及不同厚度條件下,對液態水生成情況與電池性能的影響。
催化層的探討部分,主要是探討電化學反應中氧氣與氫離子的傳遞和反應現象產生的電流、電位與生成液態水的分佈情形,電化學反應是使用Bulter-Volmer方程式來描述,質子交換膜中氫離子通量是使用Nernst-Planck方程式來描述。在催化層中,考慮氫離子在電解質中的含量與擴散係數,探討對液態水的生成以及電池性能的影響。
摘要(英) Until now, water management is an important issue on the performance of proton exchange membrane fuel cells (PEMFC). Especially, at high cell load or low gas flow rate, the two-phase transport of reactants and products constitutes an important limit in performance of PEMFC. In the two-phase region, product water obstructs the open pores of the cathode gas diffusion layer (GDL) and micro-porous layer (MPL) and limits the reactants transport to the active catalyst sites.
In this study, we establish the two-dimensional, steady state, isothermal two-phase model according to two-phase theory. The occurrence of liquid saturation in what sites of GDL, MPL and catalyst layer can be anticipated in this model. Via this two-phase model, we discuss the effect on PEMFC performance and liquid saturation with different porosity and thickness of GDL and MPL. In another way, we study the proton behavior and the influence on current density, liquid saturation distribution in catalyst layer via this two-phase model、Bulter-Volmer equation and Nernst-Planck equation.
Result shows that by increasing the porosity of porous medium, increasing the cell performance due to enhance the reactants transport and render them more active for electrochemical reaction surface. When the proton exchange membrane can hold more protons in unit volume and increase proton diffusion coefficient in the electrolyte, the PEMFC performance will be increased.
關鍵字(中) ★ 兩相流
★ 質子交換膜燃料電池
★ 水管理
關鍵字(英) ★ two phase flow
★ water management
★ PEMFC
論文目次 目錄
摘要 I
致謝 III
目錄 IV
表目錄 VII
圖目錄 VII
符號表 XII
第一章 序論 1
1.1 前言 1
1.2 燃料電池設計與運作原理 3
1.2.1 燃料電池運作原理 3
1.2.2 燃料電池的設計 4
1.3 燃料電池的極化現象 9
1.4 文獻回顧 11
1.5 研究目的 24
第二章 理論分析 26
2.1 基本假設與幾何模型 27
2.2 陰極燃料電池之數學模型 28
2.2.1 Separate Flow Model (SFM) 28
2.2.2 Two-phase Flow Model (TFM) 31
2.3 模型1 39
2.4 模型2 43
第三章 數值方法 49
3.1 有限體積法 49
3.1.1 質量、動量與物種方程式 49
3.1.2 壓力修正方程式 51
3.2 程式疊代程序 53
3.3 程式驗證 54
第四章 結果與討論 55
4.1 氣體擴散層 55
4.1.1 氣體擴散層孔隙率的影響 55
4.1.2 固定流道與GDL厚度,改變GDL厚度的影響 57
4.1.3 固定流道的厚度,改變GDL厚度的影響 59
4.2 氣體擴散層與微孔層 60
4.2.1 微孔層孔隙率的影響 60
4.2.2 固定流道與支撐層的厚度,改變MPL厚度的影響
62
4.2.3 固定流道與GDL的厚度,改變MPL厚度的影響 62
4.3 催化層 63
4.3.1 催化層中,氫離子、氧氣、水氣濃度及電流密度分佈
情況 63
4.3.2 質子交換膜氫離子含量的影響 65
4.3.3 氫離子質傳的影響 65
第五章 結論與建議 67
5.1 結論 67
參考文獻 69
參考文獻 [1] J. Larminie, A. Dicks, Fuel Cell Systems Explained, New York, Wiley, (2000).
[2] V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, “Development of small
polymer electrolyte fuel cell stacks,” Journal of Power Source, V. 70, pp.55-58, (1998).
[3] L.M. Abriola, G.F. Pinder, “A Multiphase Approach to the
Modeling of Porous Media Contamination by Organic Compounds Ⅰ., Equation Development,” Water Resources Research, V. 21, N. 1, pp.11-18, (1985).
[4] L.M. Abriola, G.F. Pinder, “A Multiphase Approach to the
Modeling of Porous Media Contamination by Organic Compounds Ⅱ., Numerical Simulation,” Water Resources Research, V. 21, N. 1, pp.19-26, (1985).
[5] C.Y. Wang, C. Beckermann, “A two-phase mixture model of
liquid-gas flow and heat transfer in capillary porous media Ⅰ. Formulation,” Int. J. Heat Mass Transfer, V. 36, N. 11, pp.2747-2758, (1993).
[6] C.Y. Wang, C. Beckermann, “A two-phase mixture model of
liquid-gas flow and heat transfer in capillary porous media Ⅱ., Application to pressure-driven boiling flow adjacent to a vertical heated plate,” Int. J. Heat Mass Transfer, V. 36, N. 11, pp.2759-2768, (1993).
[7] C.Y. Wang, P. Cheng, “A multiphase mixture model for multiphase
multi-component transport in capillary porous media Ⅰ., model development,” Int. J. Heat Mass Transfer, V.39, N. 17, pp.3607-3618, (1996).
[8] C.Y. Wang, P. Cheng, “A multiphase mixture model for multiphase,
multi-component transport in capillary porous media Ⅱ., Numerical simulation of the transport of organic compounds in the subsurface,” Int. J. Heat Mass Transfer, V. 39, N. 17, pp.3619-3632, (1996).
[9] C.Y. Wang, P. Cheng, “Multiphase Flow and Heat Transfer in Porous
Media,” Advances in Heat Transfer, V.30, pp.93-189, (1997).
[10] P. Ekdunge, K. Broka, “Modeling the PEM Fuel Cell Cathode,” J.
Appl. Electrochem., V. 27, pp.281, (1997).
[11] D. Singh, D.M. Lu, N. Djilali, “A two-dimensional analysis of mass
transport in proton exchange memebrane fuel cells,” Int. J. Engineering Science, V. 37, pp.431-452, (1998).
[12] D.L. Wood, Ⅲ, J.S. Yi and T.V. Nguyen, “Effect of direct liquid water injection and interdigitated flow field on the performance of PEMFC,” Electrochimica. Acta., V. 43, N. 24, pp.3795-3809, (1998).
[13] J.S. Yi, T.V. Nguyen, “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochemical Society, V. 146, pp.38-45, (1999).
[14] S. Um, C.Y. Wang, K.S. Chen, “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J. Electro- chemical Society, V.147, pp.4485-4493, (2000).
[15] L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M.
Forsyth, “Diffusion layer parameters influencing optimal fuel cell performance,” J. Power Sources, V. 86, pp.250-254, (2000).
[16] I.M. Hsing, P. Futerko, “Two-dimensional simulation of water
transport in polymer electrolyte fuel cells,” Chemical Engineering Science, V.55, pp.4209-4218, (2000).
[17] R. Bradean, K. Promislow, B. Wetton, “Transport phenomena in the
porous cathode of a proton exchange membrane fuel cell,” Numerical Heat Transfer, Part A, V. 42, pp.121-138, (2002).
[18] H.T. Liu, T.H. Zhou, “Numerical simulation of performance of PEM fuel cells,” International Conference on Computational Heat and Mass Transfer.
[19] Z.H. Wang, C.Y. Wang, K.S. Chen, “Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells,” J. Power Sources, V. 94, pp. 40-50, (2001).
[20] T. Berning, D.M. Lu, N. Djilali, “Three-dimensional computational
analysis of transport phenomena in a PEM fuel cell,” J. Power Sources, V.106, pp.284-294, (2002).
[21] L. You, H.T. Liu, “A two-phase flow and transport model for
the cathode of PEM fuel cells,” Int. J. Heat Mass Transfer, V. 45, pp. 2277-2287, (2002).
[22] L.B. Wang, N.I. Wakayama, T. Okada, “Numerical simulation of a new water management for PEM fuel cell using magnet particles deposited in the cathode side catalyst layer,” Electrochemistry Communications, V. 4, pp. 584-588, (2002).
[23] A. Kumar, R.G. Reddy, “Modeling of polymer electrolyte
membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” J. Power Sources, V. 114, pp.54-62, (2003).
[24] J. Soler, E. Hontañón, L. Daza, “Electrode permeability and
flow-field configuration influence on the performance of a PEMFC,” J. Power Sources, V. 118, pp. 172-178, (2003).
[25] L. Wang, A. Husar, T. Zhou, H.T. Liu, “A parametric study of PEM fuel cell performances,” Int. J. Hydrogen Energy, V. 28, pp. 1263-1272, (2003).
[26] P.W. Li, L. Schaefer, Q.M. Wang, T. Zhang, M.K. Chyu, “Multi-gas transportation and electrochemical performance of a polymer electrolyte fuel cell with complex flow channels,” J. Power Sources, V. 115, pp. 90-100, (2003).
[27] H.S. Chu, C. Yeh, F. Chen, “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell,” J. Power Sources, V. 123, pp.1-9, (2003).
[28] N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, “A
two-dimensional computational model of a PEMFC with liquid water transport,” J. Power Sources, V. 128, pp. 173-184, (2004).
[29] J.J. Hwang, C.K. Chen, R.F. Savinell, C.C. Liu, J. Wainright, “A
three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC,” J. Applied Electrochemistry, V. 34, pp. 217-224, (2004).
[30] G. Hu, J. Fan, S. Chen, Y. Liu, K. Cen, “Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields,” J. Power Sources, V. 136, pp. 1-9, (2004).
[31] M. Hu, A. Gu, M. Wang, X. Zhu, L. Yu, “Three dimensional, two phase flow mathematical model for PEM fuel cell: Part Ⅰ. Model development,” Energy Conversion and Management, V. 45, pp. 1861-1882, (2004).
[32] M. Hu, X. Zhu, M. Wang, A. Gu, L. Yu, “Three dimensional, two pahse flow mathematical model for PEM fuel cell: PartⅡ. Analysis and discussion of the internal transport mechanisms,” Energy Conversion and Management, V. 45, pp. 1883-1916, (2004).
[33] S. Shimpalee, S. Greenway, D. Spuckler, J.W. Van Zee, “Predicting
water and current distributions in a commerical-size PEMFC,” J. Power Sources, V. 135, pp. 79-87, (2004).
[34] U. Pasaogullari, C.Y. Wang, “Liquid Water Transport in Gas
Diffusion Layer of Polymer Electrolyte Fuel Cells,” J. Electrochemical Society, V. 151, A399-A406, (2004).
[35] U. Pasaogullari, C.Y. Wang, “Two-phase transport and the role of
micro-porous layer in polymer electrolyte fuel cells,” Electrochimica Acta, V. 49, pp. 4359-4369, (2004).
[36] 黃柏瑄,PEMFC電極及觸媒層之電熱流傳輸現象探討,國立中央大學,91年7月。
[37] 羅世坤,流場設計對質子交換膜燃料電池性能之研究,國立中央大學,92年6月。
[38] M. Kaviany, Principles of Heat Transfer in Porous Media, New York, Springer-Verlag, (1995).
[39] A. Bejan, D.A. Nield, Convection in Porous Media, New York, Springer-Verlag, (1992).
[40] KR Weisbrod, SA Grot, NE Vanderborgh, “Through-the-eletrode
model of a proton exchange membrane fuel cell,” Electrochem. Soc. Proc., (1995).
[41] D.M. Bernardi, M.W. Verbrugge, “Mathematical model of a gas duffusion electrode bonded to a polymer electrolyte,” AIChE J., V. 37, pp. 1151-1163, (1991).
[42] D.M. Bernardi, M.W. Verbrugge, “A mathematical model of the solid-polymer-electrolyte fuel cell,” J. Electrochem. Soc., V. 139, pp. 2477-2491, (1992).
[43] A. Parthasarathy, S. Srinivasan, A. John Appleby, “Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface – A Microelectrode Investigation,” J. Electrochem. Soc., V. 139, pp. 2530-2537, (1992).
[44] W. Nernst, “Zur Kinetik der in Lösung befindlichen Körper:Ⅰ.
Theorie der Diffusion,” Z. Physik Chem., V. 2, pp.613, (1888).
[45] W. Nernst, “Die Elektromotorische Wirksamkeit der Jonen:Ⅰ.
Theorie der Diffusion,” Z. Physik Chem., V. 4, pp. 129, (1889).
[46] M. Planck, “Ueber die Erregung vol Electricität und Wärme in
Electrolyten,” Ann. d. Phys. u. Chem., V. 39, pp. 161, (1890).
[47] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, New York , McGraw-Hill, (1980).
[48] E.L. Cussler, Diffusion, mass transfer in fluid systems, New York, Cambridge, (1984).
[49] F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, New York, Wiley, (1996).
[50] K.Z. Yao, K. Karan, K.B. McAuley, P. Oosthuizen, B. Peppley, T. Xie, “A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells,” Fuell Cells, V. 4, pp. 3-29, (2004).
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2005-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明