博碩士論文 93323084 詳細資訊


姓名 臧志仁(Chih-Jen Tsang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射干涉儀於共焦顯微系統之軸向定位控制
(Using Interferometer to Control Axial Position in Confocal Microscope)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文架設一套差動式共焦顯微系統,並設計一模糊滑動控制器來抑制共焦顯微系統中掃描平臺的軸向擾動量。系統以麥克森干涉儀為感測器的位置回授裝置,實驗驗證,控制器可有效抑制12dB軸向擾動量,使掃描平臺動態定位穩態誤差小於25nm以下。
共焦顯微系統系統的縱向位移反應曲線斜率為2.03/?m,在考慮0.3%光源雜訊下,具有4nm的軸向解析度。本文選用鋁鍍膜試片作為樣本,經由自行架設的共焦顯微系統,經光強度-階高換算測得試片表面階高為369.4nm。
摘要(英) In thesis , A differential co confocal microscopy, which with a fuzzy controller for suppressing the longitudinal disturbance of scanner in confocal microscopy, was developed. The system use Michelson interferometer as position control sensor. The experimental result shows that the fuzzy controller is effective in 12dB of the longitudinal disturbance suppression. And the system’’s position error is within 25nm.
The experimental result shows that the slop of the intensity versus longitudinal displacement (SILD) curve is enhanced to 2.03/?m. To consider 0.3% noise in the system, a depth resolution as high as 4 nm has been achieved. A al-coating step height was measured. According to the difference of intensity and the SILD, a 369.4 nm step height was obtained.
關鍵字(中) ★ 共焦顯微術
★ 干涉術
★ 模糊滑動控制
★ 精密定位控制
關鍵字(英) ★ Confocal microscope
★ Interferometry
★ Fuzzy slidi
論文目次 中文摘要………………………………………………………………I
英文摘要………………………………………………………………II
致謝…………………………………………………………………III
目錄…………………………………………………………………….IV
圖目錄………………………………………………………………..VIII
表目錄………………………………………………………………..X
第一章 諸論……………………………………………………………1
1-1前言…………………………………………………………1
1-2研究動機與目標……………………………………………2
1-3文獻回顧……………………………………………………4
1-4論文架構……………………………………………………6
第二章 共焦顯微鏡掃描平臺軸向定位設計原理……………………7
2-1共焦顯微術…………………………………………………7
2-2雷射干涉儀定位控制系統架構……………………………13
2-3共焦顯微鏡及掃描平臺定位系統架構……………………17
2-3-1 系統元件規格…..……………………………20
2-3-2 掃描系統……………………………………..22
第三章 控制系統原理與方法…………………………………………25
3-1 模糊滑動控制架構………………………………………26
3-2 滑動平面規劃……………………………………………27
3-2-1 滑動模態控制理論…………………………………27
3-2-2 滑動條件……………………………………………30
3-2-3 等效控制……………………………………………30
3-2-4 迫近條件……………………………………………31
3-3 模糊控制……………………………………………………34
3-3-1 模糊控制系統架構…………………………………34
3-3-2 定義變數……………………………………………35
3-3-3 模糊化機構…………………………………………36
3-3-4 模糊知識庫…………………………………………38
3-3-5 決策邏輯……………………………………………40
3-3-6 解模糊化機構………………………………………42
3-3-7 參數 、 設定…………………………………43
第四章 系統鑑別與控制模擬………………………………………44
4-1 ARX模型……………………………………………44
4-2 系統鑑別實驗……………………………………………51
4-2-1 鑑別實驗裝置………………………………………51
4-2-2 鑑別過程與結果分析………………………………52
4-3 模糊滑動控制模擬………………………………………55
4-3-1 模糊滑動控制器計……………………………………55
4-3-2 控制力模擬…………………………………………57
第五章 實驗步驟與結果討論……………………………………63
5-1量測與控制步驟流程……………………………………63
5-2共焦系統軸向解析力分析………………………………66
5-3 定位控制結果分析………………………………………72
5-3-1 軸向擾動量…………………………………………72
5-3-2 軸向擾動定位控制…………………………………74
5-4試片量測結果與分析……………………………………79
第六章 結論………………………………………………………87
參考文獻……………………………………………………………..88
附錄一 掃描平臺系統鑑別程式……………………………………90
附錄二 作者相關著作……………………………………………….91
參考文獻 [ 1 ] E.ABBE, , Archiv. Mikros . Anat ., 9, 413. , (1873)
[ 2 ] T.Yamazaki,I. Komuro,and Y. Yazaki, J. Mol. Cell Cardiol.27, 133, (1995)
[ 3 ] T. Wilson and C. J. R. Sheppard, ”Theory and practice of scanning optical microscopy”, Academic Press, London, (1984)
[ 4 ] C.J.R. Sheppard and D.M. Shotton, ”Confocal laser scanning microscopy”, Springer, New York, (1997).
[ 5 ] S.W. HELL, ”Enhancing the axial resolution in far-field light microscopy :two-photon 4Pi confocal fluorescence microscopy”, Journal modern optics, VOL . 41, NO. 4, 675-681 , (1994)
[ 6 ] C. H. Lee, H. Y. Mong, and W. C. Lin, ”Noninterferometric wide-field optical profilometry with nanometer depth resolution”, Optics Letters. 27, pp.1773, (2002)
[ 7 ] C. H. Lee, and J. Wang, ”Noninterferometric differential confocal microscopy with 2- nm depth resolution”, Optics Communications. 135, pp.233, (1997)
[ 8 ] C. H. Lee, W. C. Lin and J. Wang, “Using differential confocal microscopy to detect the phase transition of lipid vesicle membranes”, Optical. Engineeing. 40, pp.2077, (2001).
[ 9 ] A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K.Mikuriya, M. Abe, and I. Umeda, “High-speed confocal fluorescent microscopy using a Nipkow scanner with microlenses for 3-d imaging of single fluorescent molecule in real time” Bioimages_2_, 57–62 , (1996).
[ 10 ] H. Richter, E. A. Misawa, and D. A. Lucca, “Characterization ofnonlinearities in a piezoelectric positioning deivce”, in Proc. IEEE International Conf. Control Applications, Vol. 1, pp. 717-720, (1997).
[ 11 ] Leigh, T. and Zimmerman, D.”An implicit method for the nonliner modeling and simulation of piezoceramic actrators displaying hystersis”, Smart structures and materials,AD-Vol.24/AMD-Vol.123,ASME , pp.57-63, (1991)
[ 12 ] P. R. Moore and T. W. Thatcher, “Compensation in Pneumatically Actuated Servomechanisms”, Trans. Inst. Measurement and Control, Vol.7, pp. 238-244, (1985)
[ 13 ] R.Oboe , A.Beghi, “Modeling and control of a dual stage actuator hard disk with piezoelectric secondary actuator”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 138-143, (1999)
[ 14 ] R.B.Evans,J.S.Griesbach, ”piezoelectric Microactuator for dual stagecontrol”, IEEE Trans. Magn. Vol.35, No.2, pp.977-982, (1999)
[ 15 ] J. S Steven, C. M William, J. M Robert, ”On compensator design for Linear time-Invariant dual-Input signal-output system”, IEEE/ASME Trans. Mechstron., Vol.6 , No.1 , pp.50-57, (2001)
[ 16 ] 陳承賢, ”線性步進馬達結合壓電制動器之次微米定位控制”, 國立中興大學機械工程研究所,碩士論文民國八十九年。
[ 17 ] C. J Li, Homayo S. M. Beigi, S Li and J Liang, “Nonlinear piezo-actuator control by learning self-tuning regulator”, ASME, Journal of Dynamic, Systems, Measurement, and Control, Vol. 115, pp. 720-723, (1993)
[ 18 ] J. M Han, T. A Adriaens, L. de Ko Willem, and Reinder Banning, “Modeling piezoelectric actuators”, IEEE/ASME Transactions on Mechatronics, Vol. 5, No. 4, pp331-341, (2000)
[ 19 ] L.A. Zadeh, ”Fuzzy sets, ”Information and control, Vol.8, pp.338-353, (1965)
[ 20 ] E. H.Mamdani, , S. Assilian, “A fuzzy logic controller for a dynamic plant”, Int. J. Man, Maching Study, 7, pp.1-13, (1975)
[ 21 ] T. J.Procky and E. H. Mamdani, “Alinguistic self-organizing process controller”, Automatica, Vol.5, pp.15-30, (1979)
[ 22 ] Shao, Shihuang, “Fuzzy self-organizing controller and its application for dynamic processes”, Fuzzy Sets and System26, pp.151-164, (1988)
[ 23 ] B. S Zhang, and J. M Edmunds, “Self-Organizing Fuzzy Logic Controller”, IEE Proceedings-D, Vol.139, No.5, pp.460-464, (1992)
[ 24 ] S.W Kim, J.J Lee, “ Design of a fuzzy controller with fuzzy sliding surface ” Fuzzy Sets & Systems, Vol.71, No.3, pp.359-67.Netherlands, 12 May, (1995)
[ 25 ] J.C Lo,Y-H Kuo, “Decoupled fuzzy sliding-mode control “,IEEE Trans. on Fuzzy Systems, Vol.6,No.3, pp.426-435, August, (1998)
[ 26 ] J.F Shiu and C.M Lin, “ Decoupled fuzzy controller designed with fuzzy sliding surface” Automatic control conference, pp.463-468., (2000)
[ 27 ] McGraw-Hill “Introdution to fourier optis”, ch5, San Franciso, (1986).
[ 28 ] 何展効 “Mirau干涉術應用於超音波量測之研究” ,中華民國音響學會第十七屆學術研討會論文集
[ 29 ] 足立修一“控制之系統鑑別” 全華科技圖書,民國九十年。
[ 30 ] 徐之正“光束擾動之適應性控制” 碩士論文,中央大學機械工程研究所,民國八十九年。
[ 31 ] 劉金琨“滑模變結構控制matlab仿真” 清華大學出版社,民國九十四年。
指導教授 李朱育(Ju-Yi Lee) 審核日期 2006-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡