博碩士論文 93323085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.227.249.234
姓名 范紀偉(Chi-Wei Fan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用於髖關節表面重建手術之C-arm影像輔助手術導引系統
(C-arm-based navigation system for hip resurfacing arthroplasty)
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於C-arm影像的有限視野及二維影像的限制,使得醫師在手術中若需即時得知器械及骨骼之空間關係,必須拍攝大量的C-arm影像,進而使得醫師與病患皆須承受高劑量輻射線之風險。在髖關節表面重建手術(Hip Resurfacing Arthroplasty)中,最關鍵的步驟即是將Pin-centering Guide以通過股骨頭球心並沿股骨頸之方向進入股骨內,雖然廠商有提供器械輔助定位,但其過程繁複且不能保證其鑽入方向之正確性。
為改善C-arm使用上之缺點,本研究發展一套以C-arm影像為主的髖關節表面重建手術導引系統,利用股骨頭近似圓之特性經由兩張C-arm影像求解空間股骨頭球心位置,並提出以橢圓柱嵌合股骨頸之方式尋找股骨頸軸線並決定放置植入物之方位。且本系統結合光學式定位裝置能在手術中將器械與骨骼的空間關係即時顯示於電腦螢幕中,協助醫師更精確的鑽孔及後續植入物的放置動作,以期使病患獲得更好的醫療品質。
本研究提出之股骨頸外型嵌合與股骨頸軸線計算最佳化擬合方式可確實反映出股骨頸區域之真實外型,並有效達成安全引導鑽孔路徑之目的,且鑽孔位偏差可控制在4°以內。
摘要(英) The common used C-arm X-ray image for orthopedic surgery is a kind of cone-beam projection image, which cannot illustrate the anatomic structure of tissues clearly. During operation, the surgeon may take as many C-arm images as necessary to obtain in-time relative positions information of surgical tools and bones. Therefore, no matter medical persons or the patient will face the risk of receiving high dose of radiation. To solve this problem, an image-guided navigation system is developed.
The developed image-guided navigation system for hip resurfacing arthroplasty only needs two C-arm images taken at different views to guide surgical tools to the desired position and orientation. First, the center of the femoral head on each of the two C-arm images is determined by using a circle to approach the cartilage profile of the femoral head. The spatial coordinates of the femoral head center are then calculated by finding the intersection of the two projection lines connecting the femoral head center of the C-arm image and the X-ray projection center (one for each C-arm image). Then, the measured coordinates of periphery points of the femoral upper neck are used to determine an elliptic cylinder to approximate the neck profile. The axis of the elliptic cylinder must pass through the femoral head center and is the desired direction to insert the rod of the femur implant. The computer will display in real time the axial direction of the elliptic cylinder together with the direction of surgical tools on each of the two C-arm images. Therefore, under the guidance of the dynamically displayed images, the surgeon will be able to drill a hole passing through the femoral head center and along the axial direction.
An experiment using saw bone to go through the operation procedure is completed. The results show that the drilled hole is within the safe zone of the femoral neck and has an approximate 4° error relative to the axis of the elliptic cylinder.
關鍵字(中) ★ 髋關節表面重建
★ 手術導引
關鍵字(英) ★ Navigation
★ C-arm
★ fluoroscopy
★ hip resurfacing
論文目次 目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究方法簡介 4
1.4 章節瀏覽 5
第2章 研究方法 6
2.1 C-arm影像的成像扭曲與影像校正 8
2.1.1 C-arm影像的成像扭曲 8
2.1.2 C-arm影像校正 9
2.2 C-arm影像投影幾何 9
2.2.1 X-Ray發射源計算 10
2.2.2 反投影計算空間位置 12
2.3 以球體模擬股骨頭 14
2.3.1 計算股骨頭近似球球心位置 14
2.3.2 計算股骨頭近似球半徑 15
2.4 決定股骨頸軸線方向 16
2.4.1 逆向工程曲面嵌合理論 17
2.4.2 橢圓柱嵌合方法 19
2.4.3 鮑威爾最佳化方法 24
第3章 髋關節表面重建手術定位與導引系統 27
3.1 系統流程 27
3.2 硬體架構 28
3.2.1 光學式定位裝置 29
3.2.2 C-arm影像校正器 30
3.2.3 器械校正用座標對正塊 32
3.3 軟體架構及系統操作流程 33
3.3.1 軟體架構 33
3.3.2 系統操作流程 34
3.4 座標系統定義 43
3.5 座標系統間轉換關係 43
第4章 實驗結果與討論 46
4.1 C-arm影像校正器DRF位置改良 46
4.2 以近似圓計算股骨球頭球心及半徑之正確度 49
4.3 股骨頸軸線近似誤差分析 54
4.3.1 真人與切骨模型股骨頸點群取樣分析 57
4.3.2 切骨模型股骨頸表面取點分析 59
4.4 人為操作誤差 60
第5章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 63
參考文獻 65
附錄 69
自述 70
參考文獻 [1]Adams, D., and Quigley, S., “Hip resurfacing: Past, present and future,” Journal of Orthopaedic Nursing, Vol. 9, Issue 2, pp.87-94, 2005.
[2]BrainLAB, Germany, http://www.brainlab.com/.
[3]Cerveri, P., Forlani, C., Borghese, N.A., et. al., “Distortion correction for x-ray image intensifiers: local unwarping polynomials and RBF neural networks,” Medical Physics, Vol. 29, Issue 8, pp. 1759-1771, 2002.
[4]Eastaugh-Waring, S.J., Seenath, S., Learmonth, D.S., et. al. “The practical limitations of resurfacing hip arthroplasty,” The Journal of Arthroplasty, Vol. 21, Issue 1, pp. 18-22, January 2006.
[5]Ebied, A., and Journeaux, S., “(iv) Metal-on-metal hip resurfacing,” Current Orthopaedics, Vol. 16, Issue 6, pp.420-425, 2002.
[6]Euler, E., Wirth, S., Pfeifer, K.J., et. al., “3D-imaging with an isocentric mobile C-arm,” Siemens electromedica, Vol. 68, No. 2, pp. 122-126, 2000.
[7]Fitzgibbon, A.W., Pilu, M., and Fisher, R.B., “Direct least-squares fitting of ellipses,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No.5, pp. 476-480, May 1999.
[8]Gronenschild, E., Roos, J., and Mulkens, G., “The accuracy and reproducibility of an algorithm to correct for geometric image distortion in quantitative coronary angiography,” IEEE Conference Proceedings, Computers in Cardiology, pp. 105-108, 1996.
[9]Hofstetter, R., Slomczykowski, M., Krettek, C., et. al., “Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction,” Computer Aided Surgery, Vol. 5, pp. 311-25, 2000.
[10]Hofstetter, R., Slomczykowski, M., Sati, M., et. al., “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Computer Aided Surgery, pp. 65-76, 1999.
[11]Ian, D., and Learmonth, “(ii) Conservative hip implants,” Current Orthopaedics, Vol. 19, Issue 4, pp.255-262, 2005.
[12]Joskowicz, L., Milgrom, C., Simkin, A., et. al., “FRACAS: a system for computer-aided image-guided long bone fracture surgery,” Computer Aided Surgery, pp. 271-288, 1998.
[13]Karlsson, K.M., Sernbo, I., Obrant, K.J., et. al.,“Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture,” Bone, Vol. 18, Issue 4, pp. 327-330, April 1996.
[14]Livyatan, H., Yaniv, Z., and Joskowicz, L., “Robust automatic C-arm calibration for fluoroscopy-based navigation: a practical approach,” Proc. 5th Int. Conf. on Medical Image Computing and Computer-Aided Intervention, Vol. 2489, pp. 60-68, Tokyo, Japan, September 2002.
[15]Mahaisavariya, B., Sitthiseripratip, K., Tongdee, T., et.al., “Morphological study of the proximal femur: a new method of geometrical assessment using 3-dimensional reverse engineering,” Medical Engineering and Physics, Vol. 24, pp. 617-622, 2002.
[16]Otte, M., Yalçinkaya, L., and Kozlowski, J., “Structural design of the femoral neck in primates,” Journal of Human Evolution, Vol. 34, Issue 4, pp. 413-431, April 1998.
[17]Paul, E., Beaulé, and Harlan, C., “Hemiresurfacing arthroplasty for osteonecrosis of the hip,” Operative Techniques in Orthopaedics, Vol. 10, Issue 2, pp. 123-132, April 2000.
[18]Paul, E., and Beaulé, “A soft tissue-sparing approach to surface arthroplasty of the hip,” Operative Techniques in Orthopaedics, Vol. 14, Issue 2, pp. 75-84, April 2004.
[19]Press, W.H., Flannery, B.P., Teukolsky, S.A., et. al., “Numerical recipes in C : the art of scientific computing,” Cambridge University Press, Ch. 10, 1988.
[20]Weisstein, and Eric W., "Cubic formula," from MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/CubicFormula.html/.
[21]Wright Medical Technology Inc., USA, http://www.wmt.com/
[22]Yaniv, Z., Joskowicz, L., Simkin, A., et. al., “Fluoroscopic image processing for computer-aided orthopaedic surgery,” 1st Int. Conf. on Medical Computing and Computer-Assisted Intervention, Vol. 1496, pp. 29, Boston, Massachusetts, USA, 1998.
[23]Zheng, G., Marx, A., Langlotz, U., et. al., “A hybrid CT-free navigation system for total hip arthroplasty,” Computer Aided Surgery, Vol. 7, Issue 3, pp. 129-145, 2002.
[24]Zhu, Y., Phillips, R., Griffiths, J.G., et. al., “A mathematical model for acquiring a cone axis from x-ray images,” Proc. of the IEEE International Conference on Robotics and Automation, pp. 1310-1315, Detroit, Michigan, USA, May 1999.
[25]Zhu, Y., Phillips, R., Griffiths, J.G., et. al., “Recovery of distal hole axis in intramedullary nail trajectory planning,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, pp. 1561-1566, Seoul, Korea, May 2001.
[26]Ziylan, T., and Murshid, K.A., “An analysis of anatolian human femur anthropometry,” Turkish Journal of Medical Sciences, Vol. 32, Issue 3, pp. 231-235, March 2002.
[27]王舜民, “骨科手術用C-arm影像輔助規劃及導引系統,” 碩士論文, 中央大學機械工程研究所, 2002.
[28]吳吉春, 王舜民, 顏兆萱等, “骨科手術用C-arm 影像輔助導引系統之發展,” 中華民國九十二年度醫學工程年會論文集, pp. 44-45, 2003.
[29]范姜凱, “非影像式全髖關節置換手術導引系統,” 碩士論文, 中央大學機械工程研究所, 2005.
[30]楊遠祥, “應用於股骨轉子間骨折之C-arm based手術導引系統,” 碩士論文, 中央大學機械工程研究所, 2005.
[31]賴景義, 翁文德, “逆向工程理論與應用,” 全華科技圖書股份有限公司, Ch. 8, November 2004.
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明