博碩士論文 93323095 詳細資訊


姓名 沈毓達( Yu-Ta Shen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氣壓馬達系統設計與應用
( Design and application for a pneumatic motor system)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中)
現今氣動馬達系統在工業上的應用越來越廣泛,比如嚴禁火花的工作環境、礦工廠、化學廠等等,但是主要都侷限在精度不需要太高的應用,由於不會有過熱的現象產生,應用在相關的研究就越顯重要,所以這篇論文主要是針對系統在速度的控制上發展出模型參考控制器,也針對移動平台發展有強健性的滑模控制器。

在台灣大約有1千3百萬輛的機車,其排放出的一氧化碳、碳水化合物將近占了空氣汙染的10%,為了改善廢氣排放汙染的問題,此篇論文也提出兩個新的構想,其中之一是把氣動馬達直接加裝在摩托車上面,以高壓氣體作為能量來源,另外一個是氣壓混合引擎的構想,結合氣動馬達與傳統內燃機達到油耗減少的目的。

摘要(英)
Nowadays, air motors are widely used in the automation industry due to special requirements, such as spark-prohibited environments, the mining industry, chemical manufacturing plants, and so on. The purpose of this thesis is to analyze the behaviors of a vane-type air motor and to design a model reference adaptive control (MRAC) with a fuzzy friction compensation scheme for speed control. The behaviors of a ball screw table powered by a vane-type air motor are analyzed and a robust sliding mode controller is designed for position control. Currently in Taiwan, there are more than 13 million motorcycles, mostly driven by internal combustion engines (ICE). The pollutants, carbon monoxide (CO) and unburned hydrocarbons (HC), generated by motorcycles are account for more than 10% of the air pollutants released to the atmosphere every year. In order to improve the air pollution condition and eliminate the pollutants exhausting, this thesis also presents two new ideas of using compressed air as the power source for motorcycles. One idea is to equip a motorcycle with an air motor, which transforms the energy stored in the compressed air into mechanical energy. The other is to develop a hybrid pneumatic motorcycle, whose driving performance and the mileage are simulated. This pneumatic hybrid motorcycle can improve efficiency with an appropriate control strategy for driving operation.

關鍵字(中) ★  氣壓混合引擎
★ 空氣汙染
★ 滑模控制器
★ 模型參考控制器
★ 氣動馬達
關鍵字(英) ★  air motor
★ model reference adaptive control
★ robust sliding mode controller
★ air pollution
★ pneumatic hybrid motorcycle
論文目次
摘要………………………………………………………………..…………………………i

Abstract……………………………………………………………………...……………ii

誌謝…………………………………………………………………………….…………..iii

Contents…………………………………………………………………………….……iv

List of Figures……….………………………………………………………….v

List of Tables…………………...………………………………….…………………….vii

Chapter 1 Introduction…………………………………….………….…………1

1.1 Background………………………………………………………………………1

1.2 Motivation and Contribution…………………………………….…………5

1.3 Organization of this thesis……………………………………….…………6

Chapter 2 The components of air motor system………………………8

2.1 ………………………………………………….…………8

2.2 Air motor…………………………………………………….…………9

2.2.1 Vane Motors………………………………………………….…………11

2.3 Encoder……………………………………………………….…………14

2.3.1 Incremental rotary encoder…………………………….…………14

2.3.2 Optical linear encoder……………………………….…………16

2.4 TMS320F240 DSP LH-069………………………………………………. 22

2.5 DSP emulator…………………………………………………………………..…22

2.6 Propotional control valve…………………….……………….…………24

Chapter 3 Speed control of air motor system……………………...……………26

3.1 Introduction………………………………………………………….…………26

3.2 Air motor system for speed control………………………………………29

3.3 Nonlinear behavior of air motor system…………………………………31

3.4 Model reference adaptive controller design…………………………33

3.5 Dead-zone Compensation Using Fuzzy Inference…….…….…………42

3.6 Experiment results………………………………………………….…………46

3.7 Conclusion………………………………………………..………….…………48

Chapter 4 Position control of air motor system………………………………50

4.1 Introduction……………………………………………..……….…………50

4.2 Air motor ball screw table system……………………………….…………51

4.3 Robust sliding mode control for second-order uncertain systems …………………………………..……………….…………54

4.3.1 Controller design…………………………..……………….……………54

4.4 Experimental results………………………………………………….…………58

4.5 Conclusion………………………………………………………….…………64

Chapter 5 A air-powered motorcycle……………….…………………………65

5.1 Introduction………………………………………………………….…………65

5.2 Air-powered motorcycle system…………………………………………68

5.3 Assembly and experiment for the air-powered motorcycle……………71

5.4 Conclusion……………………………………………………………..…………76

Chapter 6 A novel Pneumatic hybrid engine……………………………………77

6.1 Introduction……………………………………………………….…………77

6.2 Pneumatic hybrid engine concept…………………….……………………79

6.2.1 Pumping charge……………………………………...………….…………81

6.2.2 Motoring………………………………………………………….…………86

6.3 Pneumatic hybrid motorcycle Modeling………………………….…………89

6.4 Driving cycle………………………………………………...……….…………94

6.5 Simulation and results…………………………………………….…………97

6.6 Conclusion………………………………………………...………….…………102

Chapter 7 Conclusions…………………………………………………….………104

References……………………………………………….…………………….…………105

學術文章與經歷…………………………………………………………………………108

List of Figures

Fig. 1-1 Pneumatic hammer………………………………………………….…………2

Fig. 1-2 Pneumatic cylinder………………………………………………….…………3

Fig.2-1 Vane-type air motor………..……………………………………………….……9

Fig. 2-2 Three different design schemes for vane motors: 3 port reversible motor using internal energy(Left), 2 port non-reversible motor(middle), 2 port reversible motor without expansion(right)………..…………………….…………11

Fig. 2-3 Arrangement of reversible vane motor………...…………………………13

Fig. 2-4 Cut-away view and air flow……………………………………….…………13

Fig.2-5 Incremental optical rotary encoder……………………………….…………15

Fig.2-6 Optical linear encoder……………………………………………….…………16

Fig.2-7 TMS320F240 CUP top view………………………….………………………18

Fig.2-8 TMS320F240 function block diagram……….………………….…………19

Fig.2-9 DSP LH-069………………………………………………………….…………20

Fig.2-10 DSP simulator…………..………………………………………….…………23

Fig.2-11 (a) proportional directional control valves (b) proportional pressure control valves……………………………..……………………………………..…………25

Fig. 3-1 Schematic diagram of the air motor system…………………………30

Fig.3-2 Experimental air motor system……………………………….…………30

Fig.3-3 The static relationship between the applied voltage and rotational speed (the input frequencies in Fig.3-3-a,b,c are 0.2 Hz,0.4 Hz and 0.8 Hz, respectively. Fig.3-3-d is dead-zone model)…….………………………………………….…………32

Fig. 3-4, Air motor inner structure………….…………………………….…………33

Fig. 3-5 MRAC without friction compensation…………………...….…………39

Fig. 3-6 MRAC with friction compensation……………….………….…………40

Fig. 3-7 MRAC with friction compensation, , Ks is too small to eliminate dead-zone.……………………………………………………………...……40

Fig. 3-8 MRAC with friction compensation, ,Ks is too small to eliminate dead-zone.……………………………………………….…………41

Fig. 3-9 MRAC with friction compensation, ,Ks is enough to eliminate dead-zone.………………………………………………………….…………41

Fig. 3-10 MRAC with friction compensation, ,Ks is enough to eliminate dead-zone.……………………………………………………….…………42

Fig. 3-11 Block diagram of speed control using dead-zone compensation with fuzzy rules and MRAC controller……………………...………………….…………44

Fig.3-12 The membership of error(Fig. 3-12-1) and speed(Fig. 3-12-2) ……45

Fig. 3-13 MRAC with fuzzy friction compensation.……47

Fig. 3-14 MRAC with fuzzy friction compensation………48

Fig. 4-1 Schematic diagram of the air motor system………………………..……53

Fig.4-2 Photograph of the experimental air motor system………………….…53

Fig.4-3 The position responses with different output voltage…………………54

Fig.4-4 Position control for 10 mm and 20 mm………………..………………60

Fig.4-5 S ( ) function for 10 and 20 mm…………..…………………60

Fig.4-6 Control voltage for 10 and 20 mm…………………………….…………61

Fig.4-7 Tracking sinusoidal wave result……….…..…………………….…………61

Fig. 4-8 Tracking error………………………………….…………………….…………62

Fig.4-9 Two steps position control result……………………………….…………62

Fig.4-10 Two steps position control voltage…………………………….…………63

Fig.4-11 Tracking sinusoidal wave result under loading mass 5 kg…………63

Fig.4-12 Tracking error……………………………………………………….…………64

Fig.5-1 Schematic diagram of air-powered motorcycle………………………68

Fig. 5-2 The chain connects air motor with rear tire………………….…………73

Fig. 5-3 The practical riding test………………………………………………..……74

Fig. 5-4 The velocity of air-powered motorcycle…………………………………74

Fig. 5-5 The efficiency of air dynamic motorcycle, y is a function of polynomial asymptotic curve……...................…………………………….…………75

Fig 5-6. (a) The different pressure from inlet to outlet of air dynamic motorcycle. (b) The air flow of air dynamic motorcycle. y is a function of polynomial asymptotic curve………………………..……………………………………….…………75

Fig. 6-1 The concept of pneumatic hybrid engine……………………….…………79

Fig. 6-2 P-V diagram of pneumatic pump operation…………………….…………81

Fig. 6-3 Air compression pumping……..………………………..………….…………83

Fig. 6-4 P-V diagram of pneumatic motoring cycle…………………………..……86

Fig. 6-5 The cylinder pressure of pneumatic motoring with different tank size..88

Fig. 6-6 The force acting on a motorcycle moving along a slope………….……93

Fig. 6-7 Brake specific fuel consumption of a 125 cc four-stroke engine…….94

Fig. 6-8 Modified UDDC Driving Cycle………………………..……………………95

Fig. 6-9 NYCC Driving Cycle……………………………………………….…………96

Fig. 6-10 ECE-15 Driving Cycle………………………………..………………………96

Fig. 6-11 Flow chart of control strategy……………….………………………………99

Fig. 6-12 Pneumatic hybrid engine driving result with modified UDDC….….100

Fig. 6-13 Pneumatic hybrid engine driving result with NYCC……………..…101

Fig. 6-14 Pneumatic hybrid engine driving result with ECE-15…….…………101

List of Tables

Table 2-1 DAC address………..…………………………….…………………21

Table 2-2 Relationship between digital data and pole switch selection…...…21

Table 5-1 The major elements of air-powered motorcycle……….…….………69

Table 6-1 Calculation for pumping charge………………………………....…83

Table 6-2 Normal driver comparison of difference driving cycle………….…99

Table 6-3 Heavy driver comparison of difference driving cycle……….…..…100

參考文獻
[1]. Richardson, R., Brown, M., Bhakta, B., Levesley, M., Impedance control for a pneumatic robot-based around pole-placement, joint space controllers, Control Engineering Practice, vol. 13, issue 3, March, 2005, pp. 291-303.

[2]. Wang, J.,Pu J. and Moore P.,A practical control strategy for servo-pneumatic actuator systems,Control Engineering Practice,vol.7,pp.1483-1488,1999.

[3]. Pandian, S.R., Takemura, F., Hayakawa, Y., Kawamura,S., Control performance of an air motor-can air motors replace electric motors?, IEEE International Conference on, vol. 1, pp. 518–524, 1999.

[4]. Tokhi, M.O., Al-Miskiry, M., Brisland, M., Real-time control of air motors using a pneumatic H-bridge, Control Engineering Practice, vol. 9, issue 4, pp. 449-457, April, 2001.

[5]. Pu, J., Wong, C.B., Moore, P. R., An investigation into the profile following capability of servo-controlled air motors, Proc 4th Scandinavian Int Conf on Fluid Power, Tampere, Finland, pp 545–555,1995.

[6]. Barber A (1997) Pneumatic Handbook. 8th edn. Elsevier Advanced Technology, Oxford.

[7]. Zhang, Y. and Nishi, A., Low-pressure air motor for wall-climbing robot actuation, Mechatronics,vol. 13,no.4,pp. 377-392,2003.

[8]. Pu, J., Moore, P.R., Weston, R.H., Digital servo motion control of air motors, International Journal of Production Research, vol. 29, no 3, pp. 599-618, 1991.

[9]. Wang, J., Pu, J., Moore, P.R., Modelling study and servo-control of air motor systems, International Journal of Control, vol. 71, no. 3, pp. 459- 476, 1998.

[10]. Wang, J., Pu, J., Wong, C.B., Moore. P.R., Robust Servo Motion Control of Air Motor Systems, UKACC International Conference on Control, vol. 1, pp.90-95, 1996.

[11]. Marumo, R., Tokhi, M.O., Neural-model reference control of an air motor, 7th AFRICON Conference in Africa, Vol. 1, pp.467-472, 2004.

[12]. Wang, X.-S., Hong, H., Su, C.Y., Model reference adaptive control of continuous-time systems with an unknown input dead-zone, Control Theory and Applications, IEE Proceedings, vol. 150, no 3, PP.261 – 266, 2003.

[13]. Senjyu, T., Kashiwagi, T., Uezato, K., Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference, Power Electronics, IEEE Transactions ,vol. 17, no 2, pp. 265 – 272, March 2002.

[14]. Senjyu, T., Kashiwagi, T., Uezato, K., Position control of ultrasonic motors using MRAC with dead-zone compensation, Power Electronics, IEEE Transactions, vol. 48, no 6, pp.1278 – 1285, 2001.

[15]. Zhou, D., Shen, T.L., Tamura, K., Nakazawa, T., Henmi, N., Adaptive control of a pneumatic valve with unknown parameters and disturbances, SICE 2003 Annual Conference, vol. 3, pp.2703 – 2707, 2003.

[16]. Hwang, Y.R. and Tomizuka, M., Fuzzy Smoothing Algorithms for Variable Structure Systems, IEEE Transactions on Fuzzy Systems, vol. 2, no. 4, 1994.

[17]. Lee, C.C., Fuzzy Logic in Control System: Fuzzy Logic Controller-Part I & II, IEEE Transactions on Syst., Man., Cybern., vol. 20, no. 2, pp. 404-435, 1990.

[18]. Mizumoto, M., Fuzzy Reasoning and Fuzzy Control, Computol, vol. 28, pp. 32-45, 1989.

[19]. Zadeh, L.A., Fuzzy Sets, Information and Control, vol. 8, pp. 338-353, 1965.

[20]. Ng, H. W., and Alleyne, A., Modeling and bumpless learning control of position and pressure for an electropneumatic actuator, Proc Fluid Power Systems & Technology 2000, pp. 7–8, 2000.

[21]. Song, J. and Ishida, Y., A robust sliding mode control for pneumatic servo systems, Int. J. Eng. Sci. vol.35,no.8,pp.711-723,1997.

[22]. Šitum,Ž., Žilić, T. and Essert, M., High speed solenoid valves in pneumatic servo applications, 2007 Mediterranean Conf on Control and Automation, pp. 1-6,2007.

[23]. Nguyen, T., Leavitt, J., Jabbari, F. and Bobrow, J.E., Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves, IEEE/ASME Trans on Mechatronics, vol.12,no.2, pp. 216–219,2007.

[24]. Shin, M.C. and Lu, C.S., Fuzzy sliding mode position control of a ball screw driven by pneumatic servomotor, Mechatronics. vol. 5,no.4,pp. 421-431,1995.

[25]. Taiwan EPA, 2007. http://www.epa.gov.tw/

[26]. Wang, J.H, Chiang, W.L, Shu, J.P.H, The prospects: fuel-cell motorcycles in Taiwan, Journal of Power Sources, vol.86,no.1-2,pp.151–157, 2000.

[27]. Lin, B., Conceptual design and modeling of a fuel-cell scooter for urban Asia, Journal of Power Sources ,vol.86,no.1-2,pp. 202–213,2000.

[28]. Tso, C. and Chang, S.Y, A viable niche market: fuel-cell scooters in Taiwan, Int. J. Hydrogen Energy,vol.28,no.7,pp.757–762,2003.

[29]. Sheu, K.B and Hsu, T.H, Design and implementation of a novel hybrid-electric-motorcycle transmission, Applied Energy, vol.83, no.9,pp.959–974, 2006.

[30]. Sheu, K.B, Analysis and evaluation of hybrid scooter transmission systems, Applied Energy,vol.84,no.12, pp.1289-1304, 2007.

[31]. Huang, K.D and Tzeng, S.C, A new parallel-type hybrid electric-vehicle, Applied Energy,vol.79,no.1,pp.51-64,2004.

[32]. Huang, K.D., Tzeng, S.C and Chang, W.C, Development of a hybrid pneumatic-power vehicle, Applied Energy,vol.80,no.1, pp.47-59,2005.

[33]. Huang, K.D, Tzeng SC, Ma, W.P and Chang, W.C, Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine, Applied Energy, vol.82,no.2, pp.117-132,2005.

[34]. Chiu, Y.C and Tzeng, G.H, The market acceptance of electric motorcycles in Taiwan experience through a stated preference analysis, Transportation Research Part D, vol.4, no.2, pp.127-146,1999.

[35]. Moteur Development International (MDI). http://www. mdi.lu/english/

[36]. Huang, K.D , Tzeng, S.C and Chang, W.C, Energy-saving hybrid vehicle using a pneumatic-power system, Applied Energy, vol. 81, no.1, pp.1-18,2005.

[37]. Larminie, J. and Lowry, J., Electric Vehicle Technology Explained, John Wiley Sons, 2003.

指導教授 黃衍任( Yean-Ren Hwang) 審核日期 2010-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡