博碩士論文 93323102 詳細資訊


姓名 鄭丞謨(Cheng-Mo Zheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 H∞模糊系統控制-寬鬆變數法
(H∞ satbilition analysis for fuzzy control system)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文是研究狀態回饋控制以及 H∞ 性能的模糊控制穩定性分析 , 本論文將分成兩部分來進行討論 ,
第一部份先推導(控制)系統滿足 Lyapunov 穩定的檢測條件 。
第二部分考慮干擾的影響 , 推導出使受控系統滿足 H∞ 穩定的檢測條件 。
對於一個具非線性特徵的 Takagi-Sugeno(T-S) 模糊系統 , 在新的寬鬆充分條件之下保證其穩定 。
無論是連續或者離散時間的模糊(控制)系統都是用相似的方法(檢測條件 LMIs)來探討 。
本篇論文是針對一個前件部相依的 Lyapunov 函數(premise-dependent Lyapunov function)來探討 T-S 模糊系統的穩定條件 ,
而以前的文獻一般都是用單一矩陣 P(common P) 來推導所需的檢測條件 。
對於穩定與性能分析以及控制器的設計目前都是用 LMI 以及數值分析來處理運算 ,
這些採用前件部相依的 Lyapunov 函數(premise-dependent Lyapunov function)
經數理證明及電腦模擬的結果都比現存文獻採用單一矩陣 P(common P) 的結果寬鬆 。
摘要(英) In this paper, sufficient LMI conditions for the H∞ state feedback
control synthesis of fuzzy control systems consisting of Takagi-Sugeno
fuzzy models are proposed for continuous- and discrete-time fuzzy sys-
tem in a unified manner. Based on a premise-dependent Lyapunov func-
tion, we release the conservatism that commonly exists in the common
P approach. Particularly, the restriction embedded in continuous-time
systems on derivative of μ is removed by introducing Lie derivative to
the Lyapunov approach. It is shown that the slack variables employed in
this paper provide additional feasibility in solving the H∞ stabilization
problem of fuzzy control systems. Consequently, the stabilization condi-
tions are shown to be more relaxed than others in the existing literature.
Numerical simulations appear promising for the proposed method and
illuminate the reduction of conservatism clearly.
關鍵字(中) ★ 模糊系統 關鍵字(英) ★ fuzzy
論文目次 論文摘要 I
致謝 III
圖目 VII
第一章 簡介 1
1.1 文獻回顧 1
1.2 研究動機 2
1.3 論文結構 3
1.4 符號標記 4
1.5 預備定理 4
1.6 線積分模糊Lyapunov 函數 7
第二章 系統架構與穩定條件 10
2.1 系統架構 10
2.2 共同P檢測條件 11
2.3 非共同P檢測條件 12
第三章 控制系統架構與穩定條件 20
3.1 控制系統架構 20
3.2共同P檢測條件 21
3.3非共同P檢測條件 22
第四章 電腦模擬:控制系統 29
4.1純系統 29
4.2 連續控制系統 34
4.3 離散控制系統 38
第五章 系統架構與H∞定理 42
5.1 H∞定理 42
5.2 數學模型 43
5.3共同P檢測條件 44
5.4非共同P檢測條件 47
第六章 電腦模擬:控制與性能 61
6.1 H∞ 連續系統 61
6.2 H∞ 離散系統 67
第七章 總結與未來研究方向 69
7. 總結 69
7. 未來研究方向 70
參考文獻 71
參考文獻 [1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications
to modelling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp.
116–132, Jan. 1985.
[2] K. Tanaka and H. Wang, Fuzzy Control Systems Design: A Linear Matrix In-
equality Approach. New York, NY: John Wiley & Sons, Inc., 2001.
[3] H. Ying, “Sufficient conditions on uniform approximation of multivariate functions
by Takagi-Sugeno fuzzy systems with linear rule consequent,” IEEE Trans. Syst.,
Man, Cybern. A: Systems and Humans, vol. 28, no. 4, pp. 515–520, Apr. 1998.
[4] H. Wang, J. Li, D. Niemann, and K. Tanaka, “T-S fuzzy model with linear rule
consequence and PDC controller: a universal framework for nonlinear control
systems,” in Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio, TX., 2000,
pp. 549–554.
[5] K. Tanaka, T. Taniguchi, and H. Wang, “Generalized Takagi-Sugeno fuzzy sys-
tems: rule reduction and robust control,” in Proc. of 7th IEEE Conf. on Fuzzy
Systems, 2000.
[6] T. Taniguchi, K. Tanaka, H. Ohatake, and H. Wang, “Model construction, rule
reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy
systems,” IEEE Trans. Fuzzy Systems, vol. 9, no. 4, pp. 525–538, Aug. 2001.
[7] J. Lo and M. Lin, “Robust H1 nonlinear control via fuzzy static output feedback,”
IEEE Trans. Circuits and Syst. I: Fundamental Theory and Applications, vol. 50,
no. 11, pp. 1494–1502, Nov. 2003.
[8] ——, “Observer-based robust H1 control for fuzzy systems using two-step proce-
dure,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, pp. 350–359, June 2004.
[9] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear
systems: stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1,
pp. 14–23, Feb. 1996.
[10] K. Tanaka, T. Ikeda, and H.Wang, “Fuzzy regulators and fuzzy observers: relaxed
stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6,
no. 2, pp. 250–265, May 1998.
[11] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of
fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523–534,
Oct. 2000.
[12] Y. Blanco, W. Perruquetti, and P. Borne, “Relaxed stability conditions for Takagi-
Sugeno’s fuzzy models,” in Proc. 9th IEEE Conf. Fuzzy Syst., vol. 2, San Antonio,
TX., 2000, pp. 539–543.
[13] H. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear
matrix inequality techniques in fuzzy control system design,” IEEE Trans. Fuzzy
Systems, vol. 9, no. 2, pp. 324–332, Apr. 2001.
[14] M. Johansson, A. Rantzer, and K.-E. Arzen, “Piecewise quadratic stability of
fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 7, no. 6, pp. 713–722, Dec. 1999.
[15] K. Kiriakidis, “Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear
matrix inequalities,” IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269–277, Apr.
2001.
[16] M. Chadli, D. Maquin, and J. Ragot, “Relaxed stability conditions for Takagi-
Sugeno fuzzy systems,” in Proc. 2000 IEEE International Conference on Systems,
Man, and Cybernetics, vol. 5, 2000, pp. 3514–3519.
[17] K. Tanaka, T. Hori, and H. Wang, “A fuzzy Lyapunov approach to fuzzy control
system design,” in American Control Conference, vol. 6, Arlington, VA, 2001, pp.
4790 –4795.
[18] ——, “A dual design problem via multiple Lyapunov functions ,” in Proc. 10th
IEEE Conf. Fuzzy Syst., vol. 1, Melbourne, Australia, 2001, pp. 388 –391.
72
[19] G. Feng and J. Ma, “Quadratic stabilization of uncertain discrete-time fuzzy dy-
namic system,” IEEE Trans. Circuits and Syst. I: Fundamental Theory and Ap-
plications, vol. 48, no. 11, pp. 1137–1344, Nov. 2001.
[20] M. Teixeira, E. Assuncao, and R. Avellar, “On relaxed LMI-based design for fuzzy
regulators and fuzzy observers,” IEEE Trans. Fuzzy Systems, vol. 11, no. 5, pp.
613–623, 2003.
[21] S. Cao, N. Rees, and G. Feng, “H1 control of nonlinear continuous-time systems
based on dynamical fuzzy models,” Int’l. Journal on Systems Science, vol. 27,
no. 9, pp. 821–830, 1996.
[22] K. Tanaka, T. Hori, and H. Wang, “A multiple Lyapunov Function Approach
to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Systems, vol. 11,
no. 4, pp. 582–589, Aug. 2003.
[23] Y. Morere, T. Guerra, L. Vermeiren, and A. Kamoun, “Non quadratic stability
and stabilization of discrete fuzzy models,” in IEEE-ACIDCA Conference, 1999,
reprint from authors.
[24] T. Guerra and W. Perruquetti, “Non quadratic stabilization of discrete Takagi
Sugeno fuzzy models,” in FUZZ-IEEE2001 Conference, vol. 1, Melbourne, AU,
2001, pp. 1271–1274.
[25] T. Guerra and L. Vermeiren, “Conditions for non quadratic stabilization of discrete
fuzzy models,” in 2001 IFAC Conference, 2001.
[26] B. Rhee and S. Won, “A new fuzzy Lyapunov function approach for a Takagi-
sugeno fuzzy control system design,” Fuzzy Set and Systems, vol. 157, pp. 1211–
1228, 2006.
[27] G. Yang and J. Dong, “Quadratic stability analysis and synthesis of fuzzy control
system,” Automatica, 2005.
[28] H. Khalil, Nonlinear systems, 3th edition. Upper Saddle River, NJ.: Prentice-
Hall, 2002.
[29] J.-J. E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs, NJ.:
Prentice-Hall, 1991.
[30] Y. Jia, “Alternative proofs for improved LMI representations for the analysis and
design of continuous-time systems with polytopic type uncertainty: a predictive
approach,” IEEE Trans. Automatic Control, vol. 48, no. 8, pp. 1413–1416, Aug.
2003.
[31] G. Feng, “Piecewise H1 controller design of discrete time fuzzy systems.” IEEE
Trans. Syst., Man, Cybern. B: Cybernetics, vol. 34, no. 1, pp. 682–686, Feb. 2004.
[32] X. Liu and Q. Zhang, “Approach to quadratic stability conditions and H1 con-
trol designs for T-S fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 11, no. 6,
December 2003.
[33] H. Gao, Z. Wang, and C. Wang, “Improved H1 control of discrete-time fuzzy
systems: a cone complementarity linearization approach ”,” Int’l J. of Information
Sciences, vol. 175, no. 1-2, pp. 57–77, 2005.
[34] Y. Cao and P. Frank, “Robust H1 disturbance attenuation for a class of uncertain
discrete-time fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406–
415, Aug. 2000.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2006-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡