博碩士論文 93323109 詳細資訊


姓名 謝宜典(I-Tien Shueh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 無元素葛勒金法
(Element Free Galerkin Method)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文將介紹無元素葛勒金法,此無元素法為利用變動最小二乘法所求的近似函數引入葛勒金弱式推導。可克服有限元素在工程上的限制。例如:鎖死、大變形問題精確度降低及裂縫成長等問題。本文將以靜彈性力學為例,說明標準補丁測試、懸臂梁和中間挖孔平板,並討論精確度與收斂性。也提供了Fortran程式碼,可供發展應用軟體或為撰寫其他無元素法程式參考。
本文包括無元素葛勒金法、變動最小二乘法基本原理及三個數值範例與無元素葛勒金法懲罰法Fortran程式碼。
摘要(英) An element-free Galerkin(EFG) method is introduced in this paper. It is an meshfree method. In this method, moving least-square interpolates are used to construct the approximate function for the Galerkin weak-form. EFG can overcome finite element method(FEM) several limitations in the engineering. For example, locking, large deformation problems accuracy losing, and crack growth problems. In this study, EFG is applied to elastostatics analysis. Path test, cantilevered beam, and plate with a central circular hole will be computed in this paper. Accuracy and convergence are also discussed in this paper. In addition, EFG method Fortran code also is offered in this paper. This Fortran code can be developed to meshfree application software or other meshfree method in the further.
關鍵字(中) ★ 無網格法
★ 無元素法
★ 變動最小二乘法
★ 無元素葛勒金法
關鍵字(英) ★ MLS
★ Meshfree
★ Meshless
★ EFG
論文目次 目 錄
中文摘要................................................................... I
英文摘要….............................................................. II
圖目錄...................................................................... III
表目錄...................................................................... IV
目錄…...................................................................... V
第一章 序論
1.1 前言................................................................... 1
1.2 文獻回顧........................................................... 1
1.3 研究目的........................................................... 4
1.3 本文架構........................................................... 5
第二章 移動最小平方法
2.1 前言................................................................... 6
2.2 基本理論........................................................... 6
2.2 權重函數........................................................... 10
第三章 無網格葛勒金懲罰法
3.1 前言................................................................... 12
3.2 靜彈性力學公式............................................... 13
3.3 葛勒金弱式懲罰法........................................... 13
3.4 程式執行流程................................................... 18
第四章 數值範例
4.1 前言…............................................................... 19
4.2 範例1:標準補丁測試.................................... 19
4.3 範例2:懸臂梁................................................ 22
4.4 範例3:中間挖有圓孔平板............................ 26
第五章 結論與未來發展
5.1 結論................................................................... 31
5.2 未來發展........................................................... 31
參考文獻.......................................................................... 32
附錄.................................................................................. 34
參考文獻 1. Lucy L. B. (1977) “A numerical approach to the testing of the fission hypothesis,” The Astron. J, 8(12), pp. 1013-1024
2. Nayroles B., Touzot G., Villon P. (1992) “Generalizing the finite element method: diffuse approximation and diffuse elements,” Comput. Mech, Vol. 10 pp. 307-318
3. Belytschko T., Lu Y. Y. (1994) “Element free Galerkin method,” Int. J. Num. Meth, Vol. 37, pp. 229-256
4. Chung H. J., Belytschko T. (1998) “An error estimate in the EFG method,” Comput. Mech, Vol. 21, pp. 91-100
5. Dolbow J., Belytschko T. (1999) “Numerical integration of the Galerkin weak form in meshfree methods,” Comput. Mech, Vol. 23, pp. 219-230
6. Belytschko T., Krongauz Y., Organ D., et al. (1996) “Smoothing and acclerated computions in the element free Galerkin method,” J. Comput. Appl. Math, Vol. 74, pp. 111-126
7. Belytschko T., Lu Y. Y., Gu L. (1995) “Crack propagation by element-free Galerkin methods,” Frac. Mech, Vol. 51, pp. 295-315
8. Rao B. N., Rahman S. (2000) “An efficient meshless method for fracture analysis of cracks,” Comput. Method, Vol. 26, pp. 398-408
9. Onate E., Idelsohn S., Zienkiewicz O. C., et al. (1996) “A finite point method in computational mechanics: Applications to ocnvective transport and fluid flow,” Int. J. Num. Mech. Engng, Vol. 39, pp. 3839-3866
10. Liu W. K., Jun S., Zhang Y. F. (1996) “Reproducing Kernel Particle methods,” Int. J. Num. Meth. Fluids, Vol. 20, pp. 1081-1106
11. Lee S. H., Kim H. J., Jun S. (2000) “Two scale meshfree method for the adaptivity of 3-D stress concentration problems,” Comput. Mech, Vol. 26, pp. 376-387
12. Jun S., Liu W. K., Belytschko T. (1998) “Explicit reproducing kernel particle methods for large deformation problems,” Int. J. Num. Meth. Engng, Vol. 41, pp. 137-166
13. Zhu T., Zhang J., Atluri S. N. (1998) “A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach,” Comput. Mech, Vol. 21, pp. 223-235
14. Atluri S. N., Zhu T. (1998) “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech, Vol. 22, pp. 117-127
15. Liu G. R., Gu Y. T. (2000) “Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approachs,” Comput. Mech, Vol. 26, pp. 536-546
16. Lancaster P., Salkauskas K. (1981) “Surfaces generated by moving least squares methods,” Math. Comput, Vol. 37, pp. 141-158
17. Liu G. R. (2002) Mesh Free Method: Moving Beyond the Finite Element Method, CRC Press, New York
18. Timoshenko S. P., Goodier J. N., (1970) ”Theory of Elasticity,” 3rd ed. McGraw-Hill, New York
19. Liu G. R., Gu Y. T. (2005) An introduction to meshfree methods and their programming, Springer, Netherlands
指導教授 鄔蜀威(Shu-Wei Wu) 審核日期 2006-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡